

I
nside NIH Image
(NIH Image 1.58)

General Information									2
About this Document									2
Macro Examples
, Techniques & Operations						3

What is a
macro and why write one?							3

Before you begin
									4

For
the programming beginner							4

Macr
o global vs. local vars								5

Putmess
age, ShowMessage & Write							5

Switch
ing and choosing windows							6

How to
input a number or string							7

Looping										7

Re
gions of Interest (ROI)								8

Detecting the
press of the mouse button						9

Detecting press of opti
on, shift and control keys					9

Meas
urement and rUser Arrays							10

Placing macro dat
a in the "Results" window						10

Operating on each image
 in a stack (SelectSlice)					11

Accessin
g bytes of an image								12

Readin
g from disk (importing)							13

Batch Processing									14

Avoid
ing a macro dialog box								14

TickCount										15

Accessing an i
mage Look Up Table (LUT)						16

Placing time
and date into your data							17

PlotData notes										17

Calling user wri
tten pascal from a macro						18

Pascal Examples,
 Techniques & Operations						20

Users can use User.p									20

Recommended addit
ion when adding to pascal					20

Returning a valu
e from pascal to a macro						20

Pascal versions of
 SelectSlice & SelectPic						21

Putmessage, showmess
age & PutmessageWithCancel				22

Reading from disk									23

Memory
 and pointer allocation							24

Operating on an Image								25

Getting a
t the bytes of an image							25

W
orking with two images								29

Touc
hing the 4th dimension								30

Creating a dialog box									31

Key & mouse										31

Image and text										32

Photoshop
 plug-ins and debugging							34

Debugging										35

Documentation									35

Getting started										36

Syntax											36

Interaction										40

General Information

About this Document

This document is intended for beginners, like myself, who never studied programming but need to use software and get the most out of it. For those who would like to correct errors in this guide please contact Mark Vivino in the NIH Division of Computer Research and Technology. My email is mvivino@helix.nih.gov. If you are like me, spending your whole day writing a graphical user interface is not your way of make a contribution to the world. You might have an image processing application that needs doing and don't want to figure out all the aspects of the Mac Toolbox (or Windows or Motif). You can build your image processing application into the NIH Image program and save yourself from a lot of wasted effort. Hopefully, this manual may help you on your route whether simple (macro) or complex (pascal). Having freely available and modifiable source code is not seen often with most commercial packages. This guide updated 12/28/94, current to Image version 1.56.

Macro Examples, Techniques & Operations

What is a macro and why write one?

A macro is text containing a sequence of calls or routines which NIH Image interprets and executes. To write a macro, you can choose "New" then "text window" to create a text window within NIH Image. You load the macro using "Load Macro". A rich set of example macro routines is distributed with the NIH Image program. You can try some of these out and borrow code from them in order to write your own macro.

Simple macros, such as the one below, are useful utilities to save time and effort. This macro is an example of a macro which follows the same operations that could be performed by you from the NIH Image menus. It's operation is to clear anything outside of the Region of Interest (ROI) which you draw. Macros can, of course, be much larger and can include looping, calculations and basically an entire imaging application.

MACRO 'Clear Outside [C]';
 {Erase region outside ROI.}
BEGIN
 Copy;
 SelectAll;
 Clear;
 RestoreRoi;
 Paste;
 KillRoi;
END;
As a general guidline, if you have a highly iterative operation, prolonged calculation, derivation, modification or anything else complex you should consider using a pascal routine for that portion of your coding. The ease of the macro interface with your code executing at compiled pascal execution rates can be done with calls to UserCode in your macro.

Before you begin
	

It should not be hard for you to start writing a macro. You will want to do several things before you begin. First, go to the "About Image" file and print the section on macro programming. This provides you with a complete list of all macro calls. The list is organized by the Image menus or is categorized as miscellaneous. After this loacte the macros folder distributed with NIH Image. Open, load and examine some of the macros. Try using "Find" from the "Edit" menu on one of the open macros. "Find" is fairly useful in helping you debug a macro. It allows you to go to sources of error when you get error messages during the load or execution of a macro. You may also want to locate a file called "reference card" in the macros folder. This text file might be useful for observation while programming a macro.

For the programming beginner
	

You probably don't need to study programming to write a macro. Depending on the complexity of your application, you might be able to pick up everything you need by examining some of the macros in the macros folder. To some a confusing aspect of writing macros is understanding what a function is and how it is used. A function returns a value or a boolean (true/false). In the example below, nPics is a function which will return an integer number of pictures open. KeyDown('option') returns a true or false depending on whether you hold the option key down.

Macro 'Function demo

begin
 {Here is an example use of the nPics function returning a value}
 showmessage('Number of images open: ',nPics);
 {Here is an example use of keydown function returning a boolean}
 If KeyDown('option') then putmessage('Number of images open: ',nPics);
end;

One text I recomend skimming through is Pascal Programming and Problem Solving, by Leestma and yhoff, other texts are listed in the "About Image" section on macro programming.
Macro global vs. local vars

Just as in pascal, C, or other programming languages, you can have a local or global variable. A global variable is declared at the top of the macro file and can be utilized by any procedure or macro in the file. A local variable is declared in the procedure or macro in which it is used. For the example macro set below, "A" and "B" are local to the 'Add numbers' macro. "Answer" is globally declared and used by both macros.

VAR
 Answer:real;

Macro 'Add numbers';
Var
 A,B: real;
begin
 A := Getnumber('Enter the first number',2.0);
 B := Getnumber('Enter the second number',3.14);
 Answer := A+B;
end;

Macro 'Show Answer';
begin
 ShowMessage(' The added result is: ', Answer:4:2);
end;

Putmessage, ShowMessage & Write

PutMessage

PutMessage is perhaps one of the easiest ways to provide feedback to users. To use putmessage you simply call the routine with the message or string you wish to give to the user.

PutMessage('This macro requires a line selection');

You can pass multiple arguments with PutMessage if you needed to.

PutMessage('Have a ', 'Nice day');

ShowMessage

ShowMessage allows display of calculations, data, variables or whatever you caste as a string into the Info window.
Here is a simple example of output to the Info window:
ShowMessage('x1 = ',x1);

You can use the backslash ('\') character to do a carriage return for macros:

ShowMessage('Average Size=',AverageSize:1:2,'\TotalCount=',TotalCount);

Write

You can also write data or info onto the image window with a macro call to Write or Writeln.

 Diameter := Width / PixelsPerMM; {in MM.}
 MoveTo(300,10);
 Write('Diameter = ', Diameter:5:2,' mm.');

Switching and choosing windows

There are a number of ways to switch between windows in a macro. For the most part you will need to use the PidNumber function to identify a unique ID for that window. Pidnumber is a function which returns a value. For example you might have:

var
 MyPicID:integer;
begin
 MyPicID := PidNumber;
 Duplicate('Duplicate image');
{some process}
 SelectPic(MyPicID); {To go back to the original}

Here the returned value from the PidNumber function was assigned to a variable called MyPicID. The variable MyPicID was then used later on in the macro to select the picture.

As an alternative to SelectPic, you could have used ChoosePic(MyPicID). This would have selected the picture but would not have made it the active front window. This is useful when you flip between many windows, but do not need to activate the window.

As a second alternative, you could can use SelectWindow('Window name') to select the window by its title.

How to input a number or string

Making a call to getnumber will allow you to enter a number into your macro. The GetNumber macro will return a real number, or if assigned to an integer variable, such as in this example, it will not pass the decimal digits.

var
 MyGlobalNumber:integer;

macro 'Number input';
begin
 myGlobalNumber:=GetNumber('Enter number of iterations:',0);
end;

The idea is the same for entering a string

var
 MyString:string;

macro 'String input';
begin
 MyString:=GetString('What name?','Data');
end;

Looping

The NIH Image macro language has the standard set of pascal loops. This includes "for" loops and "while" loops. Although close to pascal, the macro language doesn't have everything as this email shows:

From wayne@helix.nih.gov (Wayne Rasband) reply on nih-image@soils.umn.edu

>in the "for" command (as in for i= 1 to fred Do) is there a skip command.
>For example, can I choose to do:
> for i = 1 to fred by 10 DO

The NIH Image macro language is (almost) a subset of Pascal and the Pascal FOR statement does not have a BY option. Instead, use a WHILE loop. For example:

 i:=1;
 while i<=fred do begin
 {process}
 i:=i+10;
 end;

Regions of Interest (ROI)

Before you start looking at macro ROI's an introduction to coordinates is worthwhile. See the picture below for a general guideline. Regions of interest are characterized by 'marching ants' which surround a selection.

Getting ROI information

GetRoi(left,top,width,height)
You will want to call this macro routine if you need any information about the current ROI. The routine returns a width of zero if no ROI exists.

ROI creation

SelectAll
The Selectall macro command is equivalent to the Pascal SelectAll(true), which selects all of the image and shows the ROI's 'marching ants'. See the above paragraph for pascal code relating to Selectall.

MakeRoi(left,top,width,height)
This is as straight forward as the name implies.

MakeOvalRoi(left,top,width,height)
Not terribly differing to implement from MakeROI. If you want a circular ROI set width and height to the same value. See the example below.

Altering an existing ROI
MoveRoi(dx,dy)
Use to move right dx and down dy.

InsetRoi(delta)
Expands the ROI if delta is negative, Shrinks the ROI if delta is positive.

Other routines involving ROI's
RestoreROI,KillRoi
These are opposities.

Copy,Paste,Clear,Fill,Invert,DrawBoundary

Detecting the press of the mouse button

The example below shows a macro which operates until the mouse button is pressed. Button is your basic true or false boolean and becomes true when the button is pressed.

macro 'Show RGB Values [S]';
var
 x,y,v,savex,savey:integer;
begin
 repeat
 savex:=x; savey:=y;
 GetMouse(x,y);
 if (x<>savex) or (y<>savey) then begin
 v:=GetPixel(x,y);
 ShowMessage('loc=',x:1,', ',y:1,
 '\value=',v:1,
 '\RGB=',RedLUT[v]:1,', ',GreenLUT[v]:1,', ',BlueLUT[v]:1);
 wait(.5);
 end;
 until button;
end;

Detecting press of option, shift and control keys
	

The macro "KeyDown(key)" (Key = 'option', 'shift', or 'control') returns a boolean true or false. It returns TRUE if the specified key is down. The example macro below can be run on any stack, using shift to delay more or control to delay less.

macro 'Animate Stack';
var
 i,delay:integer;
begin
 RequiresVersion(1.56);
 i:=0;
 delay:=0.1;
 repeat
 i:=i+1;
 if i>nSlices then i:=1;
 Wait(delay);
 SelectSlice(i);
 if KeyDown('shift') then delay:=1.5*delay;
 if delay>1 then delay:=1;
 if KeyDown('control') then delay:=0.66*delay;
 if KeyDown('option') then beep;
 ShowMessage('delay=',delay:4:2);
 until button;
end;

Measurement and rUser Arrays

	
There are a number of arrays in macros, but there are two varieties the measurement arrays and the rUser arrays. You can store macro data and results in the rUser arrays. These arrays are not affected by the Measurement counter (rCount) which works with measurements arrays such as rMean[rCount], rArea, etc. The current rCount for these is changed by doing a measurement or calling SetCounter.

Example of storing data to the rUser arrays:

 rUser1[1]:=SomeNumber;
 rUser2[1]:=SomeOtherNumber;

	If you have more than two sets of data which you'd like to keep, and because there are only two rUser arrays, then you can access other macro arrays. This includes rArea, rMean, rStdDev, rX, rY, rMin, rMax, rLength, rMajor, rMinor, and rAngle. However you will need to be careful because these arrays are affected by the rCount value and you could write over your data. An example use of measurement arrays outside the intended use is a snipet of code from the Export look up table macro:

for i:=0 to 255 do begin
 rArea[i+1]:=RedLut[i];
 rMean[i+1]:=GreenLut[i];
 rLength[i+1]:=BlueLut[i];
 end;

Here rArea, rMean and rLength are used for Red, Green and Blue instead of area, mean and length.

Placing macro data in the "Results" window;

If you have particular information, data, calculated results, or any type of numeric data which you want to keep, you can redirect it into the Results window. Use the SetUser label commands to title your field name. The rCount function keeps the current index of the measurement counter. Since rUser1 and rUser2 are arrays, you specify the index of the array with the rCount value. See below.

macro 'Count Black and White Pixels [B]';
{
Counts the number of black and white pixels in the current
selection and stores the counts in the User1 and User2 columns.
}
begin
 RequiresVersion(1.44);
 SetUser1Label('Black');
 SetUser2Label('White');
 Measure;
 rUser1[rCount]:=histogram[255];
 rUser2[rCount]:=histogram[0];
 UpdateResults;
end;

Saving results data to a tab delimeted file

	
You can also save data from the macro, to a tab delimeted text file by adding several commands in your macro:

 SetExport('Measurements');
 Export('YourFileName');

Operating on each image in a stack (SelectSlice)

By using a loop (for i:= 1 to nSlices) you can operate on a series of 2D images. The nSlices function returns the number of slices in the stack.

macro 'Reduce Noise';
var
 i:integer;
begin
 if nSlices=0 then begin
 PutMessage('This window is not a stack');
 exit;
 end;
 for i:= 1 to nSlices do begin
 SelectSlice(i);
 ReduceNoise; {Call any routine you want, including UserCode}
 end;
end;

See the series of stack macros distributed with the Image program for more examples.

Extracting a substring from a string

From reply of Doug Morris <dmorris@bmrl.med.uiuc.edu> on nih-image@soils.umn.edu

> I have a question about how to "extract" a substring from a string using
> NIH Image macro language. It doesn't seem to have pascal's "copy(source,
> index, count)" function implemented at macro language level.
 It is possible to work around this particular problem. Below is an example macro that will allow you to pull a substring out of a string. Just cut it out of the mail message and read into image.

{
 An example routine to return a substring from a string in NIH Image macro.
}
var
 ReturnString:string;

procedure copystring(SourceString:string,index:integer,count:integer);
begin;
 ReturnString:=SourceString;
 if index > 0 then Delete(ReturnString,0,index);
 Delete(ReturnString,count+1,length(ReturnString)-count);
end;

macro 'test copystring'
var TestString:string;
begin
 TestString:='This is a test';
 copystring(TestString,11,4);
 PutMessage('The Returned String is : ' ReturnString);
end;

Accessing bytes of an image
	

The macro commands GetRow, GetColumn, PutRow and PutColumn can be used for accessing the image on a line by line basis. These macro routines use what is know as the LineBuffer array. This array is of the internally defined type known as LineType. Pascal routines such as GetLine use the LineType. If you plan on accessing 'lines' of the image within your macro, it would might be worth your while to examine the pascal examples in the pascal section. After looking at these, you probably will see how to use the LineBuffer array in a macro.

First look at the definition of LineType;. LineType is globally declared as:
 LineType = packed array[0..MaxLine] of UnsignedByte;
Naturally, .i.UnsignedByte; has been type defined as:

UnsignedByte = 0..255;

The example below is a macro which uses the linebuffer array. If you are interested in using a macro to get at image data, this example should be fairly clear.

Macro 'Invert lines of image'
var
 i,j,width,height:integer;
begin
 GetPicSize(width,height);
 for i:=1 to height do begin
 GetRow(0,i,width);
 for j:=1 to width do begin
 LineBuffer[j] := 255-LineBuffer[j];
 end;
 PutRow(0,i,width);
 end;

Reading from disk (importing)

One simple way to load data from disk is to create a window and dump information to it. An example of this is a macro which imports files created by the IPLab program. The macro reads the first 100 bytes from the file into a temporary window. It erases the window when it is through finding useful header information.

macro 'Import IPLab File';
var
 width,height,offset:integer;
begin
 width:=100;
 height:=1;
 offset:=0;
 SetImport('8-bit');
 SetCustom(width,height,offset);
 Import(''); {Read in header as an image, prompting for file name.}
 width := (GetPixel(8,0)*256) + GetPixel(9,0);
 height := (GetPixel(12,0)*256) + GetPixel(13,0);
 Dispose;
 offset:=2120; {The IPLab offset}
 SetImport('16-bit Signed; Calibrate; Autoscale');
 SetCustom(width,height,offset);
 Import(''); {No prompt this time; Import remembers the name.}
end;
See the pascal section for examples of reading from disk (non-image data) to User arrays.

Batch Processing

From wayne@helix.nih.gov (Wayne Rasband) reply on nih-image@soils.umn.edu

>is there a possiblility to define 'open' access to the file contents of a
>folder (with, lets say, Images of 2.5 MB size each)? I want to do a Batch list
>for Background subtraction and contrast enhancement.

It's easy to write a macro to process a series of images in a folder as long as the file names contain a numerical sequence such as 'file01.pic', 'file02.pic', 'file03.pic', etc. I have included an example macro that does this.

macro 'Batch Processing Example';
{
Reads from disk and processes a set of images too large to simultaneously fit in memory. The image names names must be in the form 'image001', 'image002', ..., but this can be changed.
}
var
 i:integer;
begin
 for i:=1 to 1000 do begin
 open('image',i:3);
 {process;}
 save;
 close;
 end;
end;

Avoiding a macro dialog box

From wayne@helix.nih.gov (Wayne Rasband) reply on nih-image@soils.umn.edu

You should be able to process many files and only have to see one dialog box. For example, only one dialog appears when you run the following macro as long as 'A', 'B' and 'C' are in the same folder.

macro 'test';
begin
 Open('A');
 Invert;
 Save;
 Close;
 Open('B');

Another way to avoid the dialog box is to use full directory paths as in the following example.

macro 'test';
begin
 Open('hd400:images:A');
 Invert;
 Save;
 Close;
 Open('hd400:images:B');
 Invert;
 Save;
 Close;
 Open('hd400:images:C');
 Invert;
 Save;
 Close;
end;

In V1.55, you can use a full folder path [.e.g., SaveAs('HD400:My Images:mage001')] and the dialog box will not be displayed.

TickCount

From wayne@helix.nih.gov (Wayne Rasband) reply on nih-image@soils.umn.edu

According to "Inside Macintosh", ticks are counted at the rate of 60 per second. You can varify this by running the enclosed macro and timing the interval between beeps.

macro 'TickCount Test';
{"Beeps" every 10 seconds}
 var
 interval,ticks:integer;
begin
 interval:=600;
 ticks:=TickCount+interval;
 repeat
 if TickCount>=ticks then begin
 beep;
 ticks:=ticks+interval;
 end;
 until button;
end;

Accessing an image Look Up Table (LUT)
	

You can modify the way an image appears by altering the RedLUT, GreenLUT and BlueLUT. This is simple and straightforward enough. You can access the RedLUT, GreenLUT and BlueLUT arrays from both macros and from Pascal.

The pascal definitions are:

LutArray = packed array[0..255] of byte;

RedLUT, GreenLUT, BlueLUT: LutArray;

Here is an example macro which finds any gray or black components in a color image and sets them to white. It's useful for seperating certain kinds of medical data.

macro 'Remove Equal RGB [V]';
{Changes only the LUT, removes gray component from an image}
var
 i,Value:integer;
begin
 for i:=1 to 254 do begin
 If ((RedLUT[i] = BlueLUT[i]) and (RedLUT[i] = GreenLUT[i]))
 then begin
 RedLut[i] :=255;
 BlueLut[i] := 255;
 GreenLut[i] :=255;
 end;
 end;
 ChangeValues(255,255,0); {remove black}
 UpdateLUT;
end;

P
lacing time and date into your data

	
From wayne@helix.nih.gov (Wayne Rasband) reply on nih-image@soils.umn.edu

>>Here is a macro that writes the current date and time to a text window.
>
>Can this macro be modified to write the date and time into the "Show Results"
>window?
No, but it can be modified to also store results into the text window. I have included a macro that does that. Here is what the output from this macro looks like:

 Date=94:5:31
 Time=14:45:24
 Area=10000.000
 Mean=80.198

macro 'Write Results to Text Window';
var
 year,month,day,hour,minute,second,dow:integer;
begin
 GetTime(year,month,day,hour,minute,second,dow);
 Measure;
 NewTextWindow('My Results');
 writeln('Date=',year-1900:1,':',month:1,':',day:1);
 writeln('Time=',hour:1,':'minute:1,':',second:1);
 writeln('Area=',rArea[rCount]:1:3);
 writeln('Mean=',rMean[rCount]:1:3);
end;

PlotData notes

From reply of jy@nhm.ic.ac.uk on nih-image@soils.umn.edu

>Does anyone know of an easy way to get the actual points in x,y coordinates and
>the values at each point from the profile plot data using macros?

Image 1.54 introduced a new command to +/- allow this:

"A command was added to the macro language for making profile plot data available to macro routines. It has the form "GetPlotData(count,ppv,min,max)", where count is the number of values, ppv is the number of pixels averaged for each value, and min and max are the minimum and maximum values. The plot data values are returned in a built-in real array named PlotData, which uses indexes in the range 0-4095. The macro "Plot Profile" in "Plotting Macros" illustrates how to use GetPlotData and PlotData."

[from the changes file]

To help answer your question further....

1. For a count value of n the PlotData array will have meaningful values from 0 to n-1 (higher array values are accessible but will contain old/meaningless results).

2. Count is equal to the line length, in pixels, rounded to the nearest integer value. But...
3. Substantially more pixels are usually highlighted by a line selection, and this seems to have only an approximate corelation with the pixels used by PlotData.

4 The PlotData array contains real-numbers (not integers) which presumably are derived from a weighted average of pixels rather than being the values of single pixels - even when ppv is 1. Because of this it is not possible to relate PlotData values to single locations.

5. My conclusion after some experimentation is that;

 after GetLine(x1,y1,x2,y2,lw);
 and GetPlotData(count,ppv,min,max);

The following function will probably return the centre of the location used to derive PlotData[c]:

 ypos:=y1+(c+0.5)/(count)*(y2-y1);
 xpos:=x1+(c+0.5)/(count)*(x2-x1);

Calling user written pascal from a macro
	

Image allows you to call by name user developed pascal routines from a macro which you write. Outlined below are example steps you can take to achieve this. You can pass into your pascal procedure up to three extended values. If you don't have any values to pass than pass a zero or any other value.

Step 1:
Write a macro or macro procedure which calls UserCode(n,p1,p2,p3). Be sure to pass values for n, p1, p2 and p3. The example below will call a routine in User.p to add and display two numbers. Note that n equals 1 in this call, because the routine calls the 1st UserMacroCode. This is further explained in step 3.

macro 'Add two values'
var
 NoValue:integer;
 ValueOne,ValueTwo:Real;
begin
 NoValue := 0;
 ValueOne := 2.0;
 ValueTwo := 3.14
 UserCode('AddTwoNumbers',ValueOne,ValueTwo,NoValue);
end;

Step 2:
Write a pascal routine in the User.p module. Again, this example simply adds two numbers and shows the result in the Info Window.
 procedure AddTwoNumbers (Value1, Value2: extended);
 var
 str1, str2, str3: str255;
 Result: extended;
 begin
 Result := Value1 + Value2;
 RealToString(Value1, 5, 2, str1);
 RealToString(Value2, 5, 2, str2);
 RealToString(Result, 5, 2, str3);
 ShowMessage(Concat('1st number = ', str1, cr, '2nd number = ', str2, cr, 'Added result = ', str3));
 end;

Step 3:
Modify the UserMacroCode; procedure to call your pascal procedure. The UserMacroCode procedure is found at the bottom of the User.p module. Because you could call differing UserCode routines, the string you pass into UserCode selects which routine you would like to call. This example checks to see if you have passed the string 'AddTwoNumbers'.

 procedure UserMacroCode (str: str255; Param1, Param2, Param3: extended);
 begin
 MakeLowerCase(str);
 if pos('addtwonumbers', str) <> 0 then begin
 AddTwoNumbers(Param1, Param2);
 exit(UserMacroCode);
 end;
 ShowNoCodeMessage;
 end;

Step 4:
Compile your modified version of Image. Load your macro and execute away. Shown below is the result of the entire example.

Pascal Examples, Techniques & Operations

Users can use User.p
	

The User.p module is a good candidate for the placement of pascal source code which you develop. Since the User.p module is strategically placed in the build order below other modules you can call just about any routine in the rest of the project. Be sure to add the module name which contains the routine you are calling to the uses command in User.p

uses
 QuickDraw, Palettes, PrintTraps, globals, Utilities, Graphics; <=== add module name here if you need to. Example would be File1, File2 or any other unit.

Recommended addition when adding to pascal
	

If you plan on modifying any of the pascal units, I would personally recommend that you add two comment lines to each and every pascal modification that you do. These are:

{Begin Modification}
YourModification;
{End Modification}

You won't regret it later when you go through code you wrote a year or two ago, or if you try and read somebody else's code. It is easy to use the find utility to find your old or other peoples modifications by searching on "begin modifications'.

Returning a value from pascal to a macro

One method for returning a calculated value from a pascal routine back into a macro is to use the rUser1 or rUser2 arrays. You can return real numbers and many of them if you need too.

In Pascal have:

	User1^[1] := MyReturnValue;

In the macro have:

	ReturnedValue := rUser1[1];

Or if you desire seeing the output in the results window you could have a macro like this:

Macro 'Show table';
begin
 SetOptions('User1');
 SetPrecision(3);
 SetCounter(5);
 SetUser1Label('My 5 calc values');
 ShowResults;
end;

Pascal versions of SelectSlice & SelectPic
	

SelectSlice is available directly in pascal. You might set something up like the following:

if Info^.StackInfo <> nil then
 SliceCount := Info^.StackInfo^.nSlices
else
 SliceCount := 1;
for SliceNumber := 1 to SliceCount do begin
 SelectSlice(SliceNumber);

For SelectPic you might copy this code (taken from macros source file) and pass the PictureNumber to the routine (i.e. for PictureNumber:=1 to nPics):

 procedure SelectImage (id: integer);
 begin
 StopDigitizing;
 SaveRoi;
 DisableDensitySlice;
 SelectWindow(PicWindow[id]);
 Info := pointer(WindowPeek(PicWindow[id])^.RefCon);
 ActivateWindow;
 GenerateValues;
 LoadLUT(info^.cTable);
 UpdatePicWindow;
 end;

Putmessage, showmessage & PutmessageWithCancel

PutMessage

PutMessage is perhaps one of the easiest ways to provide feedback to users. To use putmessage you simply call the routine with the message or string you wish to give to the user.

PutMessage('Capturing requires a Data Translation or SCION frame grabber card.');

You can pass multiple arguments with PutMessage. Doing this is a bit different is Pascal and macros.

PutMessage(concat('Have a ', 'Nice day'));

or even something like:

PutMessage(concat('A disastrous bug occurred at: ', Long2Str(BigBadWolf)));

PutMessageWithCancel
PutMessageWithCancel allows you to choose the path you might want to take in your code. Unlike putmessage, it allows you to press a cancel button. This might indicate that you should exit your procedure, such as in this example:

var
 item: integer;
begin
item := PutMessageWithCancel('Do you really want to do this operation?');
if item = cancel then
 exit(YourProcedure);

ShowMessage

ShowMessage allows display of calculations, data, variables or whatever you caste as a string into the Info window.

ShowMessage(CmdPeriodToStop);

or more involved:
ShowMessage(concat(str1, ' pixels ', cr, str2, ' seconds', cr, str3, ' pixels/second', cr, str));
How to input a number

function GetInt (message: str255; default: integer; var Canceled: boolean): integer;
function GetReal (message: str255; default: extended; var Canceled: boolean): extended;

You probably don't want to develop an entire dialog routine just to pass a number into your procedure from the keyboard. Fortunately, you don't have to. A default dialog exists for getting integers and real numbers.

var
 EndLoopCount:integer;
 WasCanceled:boolean;
begin
....{rest of code}
 EndLoopCount :=0; {a default}
 EndLoopCount := GetInt('Enter number of iterations:',0,WasCanceled);
 if WasCanceled then
 exit(YourProcedureName);

Reading from disk

From disk to macro user arrays:

If you have tab delimited data which you want loaded into the macro User arrays, you can easily open the data with this routine. If you have more than two columns of data then use one or more of the other macro arrays. To use this routine copy it into User.p, set it up as a UserCode call and recompile Image. You have to add File2 (File2.p contains GetTextFile) to the Uses clause at the beginning of User.p. Note that this routine has been changed for version of Image 1.54 and above.

procedure OpenData;
 var
 fname: str255;
 RefNum, nValues, i: integer;
 rLine: RealLine;
begin
 if not GetTextFile(fname, RefNum) then
 exit(OpenData);
 InitTextInput(fname, RefNum);
 i := 1;
 while not TextEOF do
 begin
 GetLineFromText(rLine, nValues);
 User1^[i] := rLine[1];
 User2^[i] := rLine[2];
 i := i + 1;
 end;
end;

If you want to see the data, take a look at the macro above in the section on returning a value from pascal to a macro.

To your own arrays:

The routine is just as applicable to those who wish to read data from disk into arrays of their own, and not the user arrays. If you have your own large arrays, you will need to allocate memory for the pointers. An example of this is shown in the section "Memory". You can open data to as many arrays as you allocate by replacing User1^[i]. Example:

while not TextEOF do begin
 GetLineFromText(rLine, nValues);
 xCoordinate^[i] := rLine[1];
 yCoordinate^[i] := rLine[2];
 zCoordinate^[i] := rLine[3];

Memory and pointer allocation

Show below is an example of dynamic memory allocation;. If you plan on using a large array then you need to allocate memory for the task. You should free the memory when done.

Here is an example of allocating memory for pointer arrays in User.p:

{User global variables go here.}
 const
 MyMaxCoordinates = 5000;

 type
 CoordType = packed array[1..MyMaxCoordinates] of real;
 CoordPtr = ^CoordType;

 var
 xCoordinate, yCoordinate, zCoordinate: CoordPtr;

procedure YourAllocationCode;
 begin
 xCoordinate := CoordPtr(NewPtr(SizeOf(CoordType)));
 yCoordinate := CoordPtr(NewPtr(SizeOf(CoordType)));
 zCoordinate := CoordPtr(NewPtr(SizeOf(CoordType)));
 if (XCoordinate = nil) or (yCoordinate = nil) or (zCoordinate = nil) then begin
 DisposPtr(ptr(xCoordinate));
 DisposPtr(ptr(yCoordinate));
 DisposPtr(ptr(zCoordinate));
 PutMessage('Insufficient memory. Use get info and allocate more memory to Image');
 end;
end;

If you don't need the pointer anymore you can free memory using the DisposPtr call.

Operating on an Image
	

The global variables below relate directly to handling of images. The entire PicInfo; record is not displayed. The actual record contains a number of other useful image parameters and can be seen in the globals.p file of the image project. Familiarity with the data structure is advisable to those who plan on modifying or operating on the image in any manner.

type
 PicInfo = record
 nlines, PixelsPerLine: integer;
 ImageSize: LongInt;
 BytesPerRow: integer;
 PicBaseAddr: ptr;
 PicBaseHandle: handle;
 {many others covered, in part, in other sections}
 end;

 InfoPtr = ^PicInfo;

var
 Info: InfoPtr;

Using this global structure allows for the simple use of

with Info^ do begin
 DoSomethingWithImage;
end;

Getting at the bytes of an image
	

Any number of techniques can be used to access the image for use or modification purposes. Several techniques and examples are listed below. The choice for which to use largely depends upon the application at hand.

Pascal routines such as GetLine use the LineType. First look at the definition of LineType. LineType is globally declared as:
LineType = packed array[0..MaxLine] of UnsignedByte;

Naturally, UnsignedByte; has been type defined as:

UnsignedByte = 0..255;

Pascal Technique one: Use Apple's "CopyBits" to wholesale copy a ROI, memory locations, or an entire image. Example's of CopyBits can be seen in the Image source code Paste procedure, some of the video capture routines and many others.

Pascal Technique two: Use ApplyTable to change pixels from their current value to pixels of another value. You fill the table with your function. The simple example below, which is extracted from DoArithmetic, would add a constant value to the image. The index of the table is the old pixel value and tmp is the new pixel value. With ApplyTable you don't have to work with a linear function like adding a constant. You basically can apply any function you like. Of course, you would want to always check and see if you are above 255 or below zero and truncate as needed. The actual ApplyTable procedure calls assembly coded routines in applying the function to the image.

Technique 2 example

procedure SimpleUseOfApplyTable;
 var
 table: LookupTable;
 i: integer;
 tmp: LongInt;
 Canceled: boolean;
begin
 constant := GetReal('Constant to add:', 25, Canceled);
 for i := 0 to 255 do begin
 tmp := round(i + constant);
 if tmp < 0 then
 tmp := 0;
 if tmp > 255 then
 tmp := 255;
 table[i] := tmp;
 end;
 ApplyTable(table);
end;

Aside from "doing arithmetic" such as adding and subtracting, the AppyTable routine is used by Image to apply the Look Up Table (LUT) to the image. Changing the LUT, such as by contrast enhancement or using the LUT tool, doesn't change the bytes of the image until the menu selection "Apply LUT" is selected from the Enhance menu.

Technique Three:

A: Use a procedure such as GetLine to move sequentially down lines of the image. You can access each line as an array. Compiled pascal is obviously much than a macro at doing this. In addition, your macro can call the faster compiled pascal code.

B: Use the Picture base address, offset to current location, and Apple's Blockmove to access individual lines of the image. Again, each line can be treated as an array allowing access to individual picture elements. Examples below.

First look at the definition of LineType. LineType is globally declared as:
 LineType = packed array[0..MaxLine] of UnsignedByte;

Naturally, UnsignedByte; has been type defined as:
UnsignedByte = 0..255;

For the technique 3 examples you can either:

1) Deal with the entire image and find it's width and height as:
with info^.PicRect do begin
 width := right - left;
 height := bottom - top;
 vstart := top;
 hstart := left;
 end;

2) Deal with just the ROI that you have created and use:
with Info^.RoiRect do begin
 width := right - left;
 RoiTop := top;
 RoiBottom := bottom;
 RoiLeft := left;
 RoiRight := right;
 end;

It is often useful to have your routine automatically define the entire image as the area which you will operate on. To automatically select the image you might do the following:

 var
 AutoSelectAll: boolean;
begin
AutoSelectAll := not info^.RoiShowing;
 if AutoSelectAll then
 SelectAll(false);

The false parameter is used to make an invisible ROI rather than the visible 'marching ants' typified by ROI selections. By first checking if an ROI exists, this code prevents overwrite of your specific ROI.

Technique 3A example

	See specific examples in the procedure ExportAsText, DoInterpolatedScaling and others. See also the procedure GetLine.

procedure AnyOldProcedure;
 var
 width, hloc, vloc: integer;
 theLine: LineType;
begin
 with info^.RoiRect do begin
 width := right - left;
 for vloc := top to bottom - 1 do begin
 GetLine(left, vloc, width, theLine);
 for hloc := 0 to width - 1 do begin
 DoSomethingWithinTheLine i.e. TheLine[hloc]
 end;
 end;
 end;
end;

Technique 3B example

This prolonged example will perform the same function as the 3a. It may or may not be easier for you to see how it functions, but should let you see how GetLine can do the job with a lot less programming. As usual some of the variables are seen in the globally declared PicInfo record.

procedure AnotherOldProcedure;
var
 OldLine,NewLine: LineType;
 SaveInfo: InfoPtr;
 p, dst: ptr;
 offset: LongInt;
 c,i: Integer;
begin
 SaveInfo := Info;
with info^.PicRect do begin
 width := right - left;
 height := bottom - top;
 vstart := top;
 hstart := left;
 end;
if NewPicWindow('new window', width, height) then
 with SaveInfo^ do begin
 offset := LongInt(vstart) * BytesPerRow + hstart;
 p := ptr(ord4(PicBaseAddr) + offset);
 dst := Info^.PicBaseAddr;
 while i <= height do begin
 BlockMove(p, @OldLine, width);
 p := ptr(ord4(p) + BytesPerRow);
 while c <= Saveinfo^.pixelsperline do begin
 NewLine[c] := OldLine[c] {+ or -??-find a pixel and do what you want}
 end;
 BlockMove(@NewLine, dst, width);
 dst := ptr(ord4(dst) + width);
 end; {while i <= height}
 end; { with SaveInfo^}
end;

The 3b example is an oversimplification of the function duplicate in the image project. It usually is a good idea to first create a new window to move your information to. The NewPicWindow; procedure can do this. The dst pointer can point into the new windows memory.

Working with two images
	

If you want to work with two images in pascal, using the data from one to effect the other image, you could set up something like the following code. You can easily work with two InfoPtr's to do the job. You might pass the picture number from a macro for convenience
SrcInfo := Info;
DestPic := Trunc(FinalImage);
Info := pointer(WindowPeek(PicWindow[DestPic])^.RefCon);
DstInfo := Info;{assign it to DstInfo}
 for vloc := RoiTop to RoiBottom - 1 do begin
 Info := SrcInfo;
 GetLine(RoiLeft, vloc, width, CurLinePtr^);

{Do something with the data and put the data to the other window}
 NewLinePtr^[hloc] := CurLinePtr^[hloc]*myfactor

 Info := DstInfo;
 PutLine(RoiLeft, vloc, width, NewLinePtr^);

T
ouching the 4th dimension

If you have multiple stacks of images which all relate to each other in some manner, you can load them all into memory for calculations. A program such as SpyGlass is useful for viewing this type of data, but it may not provide you with the means for calculating terribly much. If you wish to have a unique calculated value, or any type of value, for each point in each stack you could use Image and set something up like the below. Make sure you use Long integers for just about everything of the integer type. This routine should work with stacks of differing sizes loaded (i.e. one stack could be 200x200x5 and others might be 256x256x10 and so on).

{Set up multiple for loops for nPics and each SliceCount}
for PictureNumber := 1 to npics...
{You must find the previous data offset for the final array}
CurrentInfo := Info;
PreviousEndOfData := 0;
for i := 1 to PictureNumber - 1 do begin
 TempInfo := pointer(WindowPeek(PicWindow[i])^.RefCon);
 Info := TempInfo;
 with Info^.PicRect do begin
 Previouswidth := right - left;
 Previousheight := bottom - top;
 end;
 if Info^.StackInfo <> nil then
 PreviousSliceCount := Info^.StackInfo^.nSlices
 else
 PreviousSliceCount := 1;
 BytesUsed := PreviousSliceCount * PreviousWidth * PreviousHeight;
 PreviousEndOfData := PreviousEndOfData + BytesUsed;
end;
Info := CurrentInfo;
{Find how many slices in the current pic}
if Info^.StackInfo <> nil then
 SliceCount := Info^.StackInfo^.nSlices
else
 SliceCount := 1;
For SliceNumber := 1 to SliceCount
{Set up rest of the for loops here. The usual, up to hloc & vloc}
{put those here}
{Now compute a unique array offset}
ArrayOffset := PreviousEndOfData + (SliceNumber - 1) * LongInt(width) * height + LongInt(width) * longInt(vloc) + LongInt(hloc);
{Finally store your calculation into a unique location}
MyHugeArray^[ArrayOffset] := SomeCalculatedValue;

Creating a dialog box

Get
 function GetDNum (TheDialog: DialogPtr; item: integer): LongInt;
 function GetDString (TheDialog: DialogPtr; item: integer): str255;
 function GetDReal (TheDialog: DialogPtr; item: integer): extended;

Set
 procedure SetDNum (TheDialog: DialogPtr; item: integer; n: LongInt);
 procedure SetDReal (TheDialog: DialogPtr; item: integer; n: extended; fwidth: integer);
 procedure SetDString (TheDialog: DialogPtr; item: integer; str: str255);
 procedure SetDialogItem (TheDialog: DialogPtr; item, value: integer);

Dialogs are a good way to handle user I/O. If you can't get by with the set of dialogs in Image you could add one of your own. They can be used to set parameters or give options to the user. Several example dialogs in Image are the preferences dialog box and the SaveAs dialog. The template for dialog boxes are in the Image.rsrc file under DLOG and DITL. The DITL resource is for creation of each dialog item in the DLOG. Naturally, each item in the dialog template has a reference integer value associated with it. This allows you to keep track of what you are pressing or which box you are entering information into.

To handle the dialog to user I/O, you need to have a tight loop checking what is being pressed or entered. If the user is entering a number or string you need to retrieve it with one of the GET dialog functions. Likewise, you can pass information or turn off a button with the SET procedures. The basic form for a dialog loop appears below:

mylog := GetNewDialog(130, nil, pointer(-1)); {retrieve the dialog box}
Do default SET's here
OutlineButton(MyLog, ok, 16);
repeat
 ModalDialog(nil, item);
 if item = SomeDialogItemID then begin
 Get or Set something
... lots of if statements to check which item is pressed
until (item = ok) or (item = cancel);
DisposDialog(mylog);

Key & mouse

 function OptionKeyDown: boolean;
 function ShiftKeyDown: boolean;
 function ControlKeyDown: boolean;
 function SpaceBarDown: boolean;
It is fairly common for a menu selection to have several possible paths to follow. The selection process can be dictated via use of simple boolean functions. For the most part they are self explanatory. Holding the option key down; when selecting a menu item is the most common way to select a divergent path. Your routine need only execute the function to test the key status.

 if OptionKeyDown then begin
 DoSomething;
 end
 else begin
 DoSomeThingElse;
 end;

CommandPeriod

 function CommandPeriod: boolean;

The CommandPeriod; function is used when you want to interrupt execution of a procedure. For example you might include the following bit of code in a prolonged looping routine that you write:

if CommandPeriod then begin
 beep;
 exit(YourLoopingProcedure)
 end;

Mouse button
Apple has supplied several mouse button routines such as the true or false button boolean. It's functionality is the same as in the macro language.

Function Button:boolean;

The button functions are explained in Inside Mac

Image and text
	

There are a number of ways to handle text with Image. If you are working in the context of macros, then a text window should handle most of what you want to do. Copy and paste functions work with the text window. Sample macros, such as the example under SelectPic and Selectwindow in the macros section above, show how to handle the majority of text data handling needs.

If your needs are larger, or if you are considering extensive data to disk handling, then you should consider using the textbuffer pascal routines described below. You can use these routines to export as text all the data you can possibly fill memory with. These are NOT connected with the text window routines, which are seperately seen in the Text.p file.

Global declarations
const
 MaxTextBufSize = 32700;
type
 TextBufType = packed array[1..MaxTextBufSize] of char;
 TextBufPtr = ^TextBufType;
var
 TextBufP: TextBufPtr;
 TextBufSize, TextBufColumn, TextBufLineCount: integer;

Other useful definitions include:
 cr := chr(13);
 tab := chr(9);
 BackSpace := chr(8);
 eof := chr(4);

Dynamic memory allocation; for the textbuffer; (under Init.p) sets up a non-relocatable block of memory.

TextBufP := TextBufPtr(NewPtr(Sizeof(TextBufType)));

To clear the buffer set TextBufSize equal to zero. Use TextBufSize to keep track of what data within the textbuffer is valid. Anything beyond the length of TextBufSize is not useful. Many Apple routines, such as FSWrite, require the number of bytes be passed as a parameter.

Text buffer utilities
Some of the utilities associated with the textbuffer include:
procedure PutChar (c: char);
procedure PutTab;
procedure PutString (str: str255);
procedure PutReal (n: extended; width, fwidth: integer);
procedure PutLong (n: LongInt; FieldWidth: integer);
Expansion of PutString may help in the understanding of the functionality involved:
procedure PutString (str: str255);
 var
 i: integer;
 begin
 for i := 1 to length(str) do begin
 if TextBufSize < MaxTextBufSize then
 TextBufSize := TextBufSize + 1;
 TextBufP^[TextBufSize] := str[i];
 TextBufColumn := TextBufColumn + 1;
 end;
 end;

An example call sequence which places text into textbuffer might look something like:
PutSting('Number of Pixels');
PutTab;
PutString('Area');
putChar(cr);

To Save the textbuffer, the procedure SaveAsText can be used after a SFPPutfile to FSWrite data to the disk or other output.

Saving a text buffer
To Save the textbuffer, the procedure SaveAsText can be used after a SFPutfile. SaveAsText will FSWrite data to the disk. SFPutfile shows the standard file dialog box and FSWrite (within SaveAsText) does the actually saving to disk.

procedure SampleSaveBuffer;
 var
 Where: point;
 reply: SFReply;
 begin
 SFPutFile(Where, 'Save as?', 'Buffer data', nil, reply);
 if not reply.good then
 exit(SampleSaveBuffer);
 with reply do
 SaveAsText(fname, vRefNum); {this will handle the FSWriting}
 end;

Photoshop plug-ins and debugging

Plug-in Advantages

Can be written C

Work with other programs besides NIH Image
Work with the off-the-shelf versions of NIH Image

Plug-in Disadvantages

Has to be written in C
Hard to debug
Does not have access to Image's internal data structures and routines

Debugging:

From Scott Wurcer <Scott.Wurcer@analog.com> reply on nih-image@soils.umn.edu
For simple plug-ins you can create a dialog that puts information into user items via SetIText in response to a button or whatever. You can also pause and restart your code via a few buttons. This allows you to run your plug-in stop and check on internal variables or other items, and then proceed. You can usually converge on a simple problem in a few iterations. Then throw out the unneeded dialog items when you are done.

From davilla@marimba.cellbio.duke.edu (Scott Davilla) reply on nih-image@soils.umn.edu

The best way to debug a plug-in is with MacsBug (yes assembly). While I have hear the one can debug extension type code with SourceBug, I've never tried. The problem with extension type code is that most debuggers depend on symbolic definitions based on code that is compiled and linked into an application (everything is very well defined). With extension type code, transfer into it is based on a blind jump to the address of the plugin code (that gets loaded "manually" ie see the NIH Image modual 'plugins.p'). Global variables are a big no no unless you are clever with setting up the plug-in (see the apple tech note on standalone code).

From Carl.Gustafson@cbis.ece.drexel.edu (Carl Gustafson) reply on nih-image@soils.umn.edu

TMON or MacsBug.

Seriously, you may want to write a simple program that loads the code resource from the plugin, creates a parameter block, and then jumps to the plugin's entry point. None of this is for the faint of heart.

Documentation

1. The NIH Image manual, appendix A provides a description of the macro language and menu by menu explanation of the commands.

2. Reference card - this comes as a macro/text file with NIH-Image (in the Macros folder) and gives an alphabetic listing of the commands.

3. Inside NIH-Image, a supplementary manual written by Mark Vivino which explains many features of the macro language with examples. This also documents the alternative approach of writing user.p Pascal Code to compile with Image.

4. Example macros - numerous macro files come with NIH-Image and provide examples of most commands in use (N.B. One way of using these for reference is to import them into a Word-Processor, then all the files can concatenated into a single, very long, file and keywords searched for).
5. This document - an `alternative' reference file designed to help people who want to use the macro language for biometric work and have no Pascal experience.

Getting started

1. Launch Image

2. Open an Image file

3. Open the `Image Macros' file (a good one to start with)

4. Do a SaveAs giving another name (to be on the safe side)

5. Experiment - writing new macros etc. in the text window; loading with the load macros commands (special menu, cmnd-9); activate the image window and test operation.

Syntax

{comment} - anything inside curly brackets is ignored is ignored by the macro language. N.B. Not terminating the brackets will result in errors such as the macro continuing into the next macro.

[n] - array indices. E.g. rUser[1]
In a macro name defines key which will activate the macro, e.g. Macro `Test [T]`.

() - many uses including: conventional uses in mathematical and logical statement e.g.

25:=(7-2)*5; procedure calls e.g. procadd(a,b); function parameters e.g. GetPixel(x,y).

`..`	declares a string, used in various functions, e.g. Write(`string`).

;	ends a statement, omission will cause error messages, usually referring to the next
line in the macro.

rtn	always(?) optional, many statements can be included on one line, providing they are
separated by semi-colons. Also blank lines can be left in macro files to improve readability.

,	separate variables - e.g. when declaring, in procedure calls, in function calls. E.g.
GetPixel(x,y).

space Usually optional between items, but cannot be introduced within items. Compulsory between string items e.g. SetOptions(`Area Mean`).

:	a few special uses.

`\`	carriage return, useable in most message writing functions.

:=	arithmetic equals, = can only be used in boolean logic statements. Thus a:=2+3; vs IF a=5 THEN...

case - Image is not case sensitive, all identifiers (variable and command names etc.) can be
written in upper or lower case, e.g. KILLROI or killroi or KillRoi.

Parts of a macro file

Var statements

= declaration of variables

- placed at the beginning of macros or procedures

- comments placed on the same line are an easy way of documenting variables

Macros

= Discrete programs called by the operator from within NIH-Image

- Cannot be nested, call each other etc.... So, if the same code needs to be used in different
macros use procedures.

Procedures

= sub-programs caled by macros.

- need to be listed before the macro(s) or procedures that call them

- using procedures can greatly shorten macro files, improve the general structure of the programming, and simplify revision/development of macro files.

- it is often helpful when writing macro files that make complex use of procedures to include a simple test macro for each procedure.

- procedures can be called from inside other procedures, so long as they listed before them in the macro file (if not an error will be returned when the macro file is loaded).

Comments - anything in curly brackets - {}

- these do not slow macro execution and do speed macro debugging and rewriting.

Menu Manager commands

- these are included in macro names, the main ones are

Macro `(-`;	create a dividing line in the menu

Macro `Test /6`; assign command key 6 to the macro (not very useful as Image already uses most command keys).

Variables

A. Global variables (declared at beginning of macro file)

- Initially zero, and reset every time macros are loaded.
- Allow values to be passed between macros.
- Also often convenient if several macros call the same procedure.
- If an initiating macro is run then they can conveniently store constants (e.g. hscale, vscale, pi).

B. Macro variables (declared at beginning of macro)

- Initially zero, and reset whenever the macro is run.
- Are available to procedures called by the macro.
- Are not available to other macros.

C. Procedure variables (declared at beginning of proc, OR in procedure statement, e.g.procedure procadd(x,y) - x & y are implicitly declared.

- Initially zero, reset whenever the procedure is called
Only available within the procedure.

D. Measurement Arrays (rLength[], etc.)

- Although primarily provided for storing the results of measurements these arrays can be used for many purposes and are worth considering as alternatives to variables.
- Initially zero, when Image is launched.
- Values NOT reset by loading macros (cmnd-9).
- SetCounter(n) resets values between n and current value of rCount (higher and lower values are unaffected).
 ResetCounter is equivalent to SetCounter(1)
- Measure issues a SetCounter(rCount+1).
- Measure; ...; ResetCounter(rCount-1); will have the effect of doing a measure then disposing of the results without affecting anything else.
- ShowResults only shows values up to rCount, but higher array values are accessible to macro calls.
- Cannot be used in procedure calls - e.g. procadd(rX[4],rY[4]) will return an error message.

E. rUser Arrays (rUser1, rUser2)

- Initially zero, when Image is launched.
- Values are never reset; unaffected by SetCounter, ResetCounter, etc.

Variables types

Boolean - These can have two values 0-false or 1-true. Attempting to give bolean variables other values will produce error messages when the values are called in boolean statements.

Real - real numbers, e.g 2.345

Integer - whole numbers, e.g. 1,4,8. N.B. By default real numbers rare converted to integers with rounding. The functions Round(n), Trunc(n) and Abs(n) are available for further control.

Logic and loops

Conditional operation
	IF <boolean statement> THEN BEGIN
	.
	.
	END ELSE BEGIN
	.
	.
	END;
- Extra complexity can be added by ELSE IF statements etc.
- The boolean statements can use the operators = < > <= >= with either boolean or numeric variables. If AND or OR statements are used then the sub-statements must be put in braces, e.g. IF (a>5) OR (a<15) THEN...
- BEGIN and END are not needed if there is only a single statement, e.g. IF THEN a:=+5; instead of IF THEN BEGIN a:=+5; END;

Conditional loops
	REPEAT
	.
	.
	UNTIL <boolean statement>;

	WHILE <boolean statement> DO BEGIN
	.
	.
	END;
- These two forms are diferent in syntax but very similar in practice.
- <boolean statement> can be complex, as conditional operations.

Incremental loop
	FOR counter:=var TO var DO BEGIN
	.
	.
	END;
- counter should be an integer variable, it will be incremented by one at the end of each loop.
- Complex arithmetic statements are allowable instead of simple variables/values in the FOR ... TO ... DO statement.
- The counter can have its value changed by statements inside the loop; e.g. IF found THEN counter:=100;

Interaction

1- getting input from the operator

- The number of options here is strictly limited, but with ingenuity quite a lot is possible...
Button Returns true/false depending on whether the operator is pressing the mouse button. E.g. IF button THEN
GetMouse(x,y) Returns the mouse co-ordinates.
WaitForTrigger Delays macro operation until the mouse button is pressed. E.g. FOR n:= 1 TO 10 DO BEGIN WaitForTrigger; GetMouse(x,y); PutPixel(x,y,1); Wait(0.2); END; By combining WaitForTrigger and GetMouse(x,y) sophisticated conditionality can be written.
GetNumber(`prompt`,default) Gives a simple dialog box to allow input of number. E.g. newy:=(`Please input new value`,oldy);
cmnd-`.' Stops the macro, after it has finished the command it is working on - there may be a delay if it is a complex command (e.g. a convolution), in these cases it is necessary to hold the cmnd-`.' until the macro stops.

2 - Displaying output

Numerous functions display output graphically but the following are specially designed for macro output;

a. Graphic functions dependant on "current-location"

MoveTo(x,y) - sets current-location, as used in the subsequent functions. N.B. Current-location is not set by the mouse position.
LineTo(x,y) - Draw line from current-location to (x,y)
DrawNumber(n) - Draw number at current-location
DrawText(`text`) - Draw text at current-location
Write(e1,e2,..) - Draw text and/or numbers at current-location
WriteLn(e1,e2,..) - Draw text and/or numbers at current-location, but with redefinition of current-location.

b. Non-graphic output

ShowMessage(e1,e2,..) - displays message in values window. The message will stay after the macro has run until the values window is redrawn - e.g. by use of one of the measuring tools. Useful for displaying progress of a macro, debugging, etc.
PutMessage(e1,e2,..) - displays message in a dialog box. Useful for warning messages.
Beep - issues a beep. Unsophisticated but often handy.
ShowResults - Open the results window

Missing features/things you cannot do

Define new arrays - instead exploit the measurement and rUser arrays.
Access numerous constants - many constants can be set, e.g. SetScale(scale,units) but only a very few can be read, and some constants can be neither read nor written. E.g. Pixel aspect ratio, can only be set via the Set Scale dialog box and can only be determined by a macro by measuring a square ROI.
Access results Image must know but doesn't want to tell you - a variation on the above. Essentially the only results you can get are those which special routines have been written to provide you with. Other results are unobtainable even if they must have been calculated - e.g. Measure will return the maximum pixel value found, but not the location of this pixel, so forget that as a peak finding approach. (N.B. As of Image 1.56 a commnd GetScale has been introduced, but the general principle that not all constants are accessible remains).
Access extra Maths functions - the range of Maths functions provided by NIH-Image is limited, but carefully selected, consult your maths texts to remeber hw to derive the others. E.g. arctan is provided but not arcsin or arccos. But tan(a)=sin(a)/cos(a) and sin(a)^2=cos(a)^2, so you can get round that shortcoming.
Access Maths constants - no mathematical constants are defined. Define them in the macro or wrie out the number each time. (N.B. pi=3.141592654)
Select tools - the active tool on finishing a macro is always the same as when starting the macro.
Scroll or zoom windows - tough you just have to do this using the tools (N.B. cmnd-U unzooms the current window).
Define irregular ROIs - only square and line ROIs can be defined from within the macro language. This is restricting if for instance you have used macro routines to identify a sequence of points defining an object and would then like to measure it.
Import data from files into the measurement arrays - but Wayne is thinking of implementing this.
Retrieve overwritten pixels - there is no overlay available in Image so e.g. writing text on an image removes data pixels. The alternative is to work on a duplicate Image, use RevertToSaved (cmnd-R) etc. - there are lots of useful window handling commands in Image.
Work on the plot, or histogram (or any non-image windows), the macro language works essentially on image windows and you cannot e.g. draw results on the plotprofile - although it is possible to make an image file with a picture of the plot and then work on that - see the plotting macros which come with Image.

File: The most frequently asked questions about NIH-Image:

1) Downloading NIH-Image

2) Searching for answers to my question (via gopher or WWW)

3) Mail list subscribing and unsubscribing
 Related: digest and postpone mode

4) NIH Image on other platforms

Downloading the latest version of NIH Image

The latest version of NIH Image, application, documents, source code, macros and more can be found on the anonymous ftp server zippy.nimh.nih.gov in the directory /pub/nih-image

One of the best ways to download the program is to use the public domain application known as "Fetch".

Searching for answers to my question

If you want to search for answers to your question from answers given in the past on the NIH-Image mailing list you can do this via gopher. If you have access to gopher you can connect to gopher.soils.umn.edu or follow:

"Gopher tunnels" to "All Gopher Servers in the world" to "University of Minnesota Soil Science Gopher Information Service" and follow this path:

 Computer Information/
 General Information/
 Search Nih-Image Mailing List Archives <?>

to search the archived messages for keywords, or

 Computer Information/
 General Information/
 Selected Electronic Mailing List Archives/
 Nih-image*/

for the actual archived messages.

Or you can follow these routes on WWW from the following URL:

 gopher://gopher.soils.umn.edu

The message archives which are available through gopher are also
available via ftp to:

 ftp.soils.umn.edu:pub/info/email-lists/Nih-image*

How to subscribe to the NIH-Image mailing list

Note: substitute subscribe or unsubscribe as appropriate

Subscribe to the NIH Image mailing list by sending a message containing the line:

 subscribe nih-image <your real name>

Send this to listproc@soils.umn.edu

Note: if you send your message to nih-image@soils.umn.edu it will be routed to all on the list instead of getting you subscribed (or unsubscribed)

Postpone mode while away

Frequent statement:

> I was at a
> conference for 10 days and I am in the process of sorting
> through nearly 400 messages.

If you know you're going to be offline for a while, our LISTPROC has a useful feature; POSTPONE, which takes you off the distribution list, but keeps you subscribed. You can then reset your subscription when you get back.

To postpone send message:

set NIH-Image mail postpone

To restore normal mail mode send:

set NIH-Image mail ack

Digest mode option for those who don't want tons of email

Similarly, you can also set your subscription to "digest" mode, which collects all the daily messages (sometimes there will be very many) and sends it out once per day.

set nih-image mail digest

Send this to listproc@soils.umn.edu
To reset your subscription to "trickle", or many mailings mode send:

set nih-image mail ack

NIH Image on other platforms

From wayne@helix.nih.gov (Wayne Rasband) reply on nih-image@soils.umn.edu

>I would like to know if there is (or if there are plans to do) any version
>of NIH-Image that will run on any of the following machines:
>
>1. Sun Sparc Workstations

NIH Image is Macintosh application but it should be possible to run it on a SUN or HP workstation using Apple's new Mac emulator for UNIX called Macintosh Application Environment (MAE). More infomation on MAE is available from mae@applelink.apple.com. There is supposed to be a free trial CD available. Note that the Sun version requires Solaris 2.3.

>2. IBM Risk's or Digital Alpha Risk's

Apple and IBM are working on a Mac emulator for IBM workstations running AIX.

>3. DOS or Unix based PC-compatibles

There is no DOS/Windows version of NIH Image.

>4. (few chances...) Convex vectorial machines

Not possible.

>>From my undesrtanding of the discussions (I'm new to this group) the main
>focus is on Apple's, and there is one version for Silicon Graphics machines.
>Am I correct??

There is no SGI version of NIH Image.

�PAGE �

�PAGE �
2
�

