Module ij
Package ij.measure

Class CurveFitter

  • All Implemented Interfaces:
    UserFunction

    public class CurveFitter
    extends java.lang.Object
    implements UserFunction
    Curve fitting class based on the Simplex method in the Minimizer class Notes on fitting polynomial functions: (i) The range of x values should not be too far from 0, especially for higher-order polynomials. For polynomials of 4th order, the average x value should fulfill |xMean|
      • Field Summary

        Fields 
        Modifier and Type Field Description
        static int CHAPMAN
        Constants for the built-in fit functions
        static int ERF
        Constants for the built-in fit functions
        static int EXP_RECOVERY
        Constants for the built-in fit functions
        static int EXP_RECOVERY_NOOFFSET
        Constants for the built-in fit functions
        static int EXP_REGRESSION
        Constants for the built-in fit functions
        static int EXP_WITH_OFFSET
        Constants for the built-in fit functions
        static int EXPONENTIAL
        Constants for the built-in fit functions
        static java.lang.String[] fitList
        Names of the built-in fit functions
        static java.lang.String[] fList
        Equations of the built-in fit functions
        static java.lang.String[] fMacro
        ImageJ Macro language code for the built-in functions
        static int GAMMA_VARIATE
        Constants for the built-in fit functions
        static int GAUSSIAN
        Constants for the built-in fit functions
        static int GAUSSIAN_NOOFFSET
        Constants for the built-in fit functions
        static int INV_RODBARD
        Constants for the built-in fit functions
        static int IterFactor
        Deprecated.
        now in the Minimizer class (since ImageJ 1.46f).
        static int LOG
        Constants for the built-in fit functions
        static int LOG2
        Constants for the built-in fit functions
        static int POLY2
        Constants for the built-in fit functions
        static int POLY3
        Constants for the built-in fit functions
        static int POLY4
        Constants for the built-in fit functions
        static int POLY5
        Constants for the built-in fit functions
        static int POLY6
        Constants for the built-in fit functions
        static int POLY7
        Constants for the built-in fit functions
        static int POLY8
        Constants for the built-in fit functions
        static int POWER
        Constants for the built-in fit functions
        static int POWER_REGRESSION
        Constants for the built-in fit functions
        static int RODBARD
        Constants for the built-in fit functions
        static int RODBARD2
        Constants for the built-in fit functions
        static int[] sortedTypes
        Nicer sequence of the built-in function types
        static int STRAIGHT_LINE
        Constants for the built-in fit functions
      • Constructor Summary

        Constructors 
        Constructor Description
        CurveFitter​(double[] xData, double[] yData)
        Construct a new CurveFitter.
      • Method Summary

        All Methods Static Methods Instance Methods Concrete Methods 
        Modifier and Type Method Description
        void doCustomFit​(UserFunction userFunction, int numParams, java.lang.String formula, double[] initialParams, double[] initialParamVariations, boolean showSettings)
        Fit a function defined in a user plugin implementing the UserFunction interface Use getStatus() and/or getStatusString() to see whether fitting was (probably) successful and getParams() to access the result.
        int doCustomFit​(java.lang.String equation, double[] initialParams, boolean showSettings)
        Fit a function defined as a macro String like "y = a + b*x + c*x*x".
        void doFit​(int fitType)
        Perform curve fitting with one of the built-in functions doFit(fitType) does the fit quietly Use getStatus() and/or getStatusString() to see whether fitting was (probably) successful and getParams() to access the result.
        void doFit​(int fitType, boolean showSettings)
        Perform curve fitting with one of the built-in functions doFit(fitType, true) pops up a dialog allowing the user to set the initial fit parameters and various numbers controlling the Minimizer Use getStatus() and/or getStatusString() to see whether fitting was (probably) successful and getParams() to access the result.
        double f​(double x)
        Returns the formula value for parameters 'p' at 'x'.
        double f​(double[] p, double x)
        Returns the formula value for parameters 'p' at 'x'.
        static double f​(int fitType, double[] p, double x)
        Returns value of built-in 'fitType' formula value for parameters "p" at "x"
        int getFit()
        returns the code of the fit type of the fit performed
        static int getFitCode​(java.lang.String fitName)
        Returns the code for a fit with given name as defined in fitList, or -1 if not found
        double getFitGoodness()
        Get a measure of "goodness of fit" where 1.0 is best.
        java.lang.String getFormula()
        returns a String with the formula of the fit function used
        int getIterations()
        Get number of iterations performed.
        java.lang.String getMacroCode()
        Returns macro code of the form "y = ...x" for the fit function used.
        static int getMax​(double[] array)
        Gets index of highest value in an array.
        int getMaxIterations()
        Get maximum number of iterations allowed (sum of iteration count for all restarts)
        Minimizer getMinimizer()
        Returns a reference to the Minimizer used, for accessing Minimizer methods directly.
        java.lang.String getName()
        returns the name of the fit function of the fit performed
        int getNumParams()
        Get number of parameters for current fit formula Do not use before 'doFit', because the fit function would be undefined.
        static int getNumParams​(int fitType)
        Returns the number of parameters for a given fit type, except for the 'custom' fit, where the number of parameters is given by the equation: see getNumParams(String)
        static int getNumParams​(java.lang.String customFormula)
        Returns the number of parameters for a custom equation given as a macro String, like "y = a + b*x + c*x*x" .
        double[] getParams()
        Get the result of fitting, i.e.
        Plot getPlot()  
        Plot getPlot​(int points)  
        double[] getResiduals()
        Returns residuals array, i.e., differences between data and curve.
        int getRestarts()
        Get maximum number of simplex restarts to do.
        java.lang.String getResultString()
        Get a string with detailed description of the curve fitting results (several lines, including the fit parameters).
        double getRSquared()
        Returns R^2, where 1.0 is best.
        double getSD()
        Returns the standard deviation of the residuals.
        static java.lang.String[] getSortedFitList()
        Returns an array of fit names with nicer sorting
        int getStatus()  
        java.lang.String getStatusString()
        Get a short text with a short description of the status.
        double getSumResidualsSqr()
        Returns the sum of the residuals (may be NaN if the minimizer could not start properly i.e., if getStatus() returns Minimizer.INITILIZATION_FAILURE).
        double[] getXPoints()
        returns the array with the x data
        double[] getYPoints()
        returns the array with the y data
        void setInitialParameters​(double[] initialParams)
        Sets the initial parameters, which override the default initial parameters.
        void setMaxError​(double maxRelError)
        Set the maximum error.
        void setMaxIterations​(int maxIter)
        Set maximum number of iterations allowed (sum of iteration count for all restarts)
        void setOffsetMultiplySlopeParams​(int offsetParam, int multiplyParam, int slopeParam)
        For improved fitting performance when using a custom fit formula, one may specify parameters that can be calculated directly by linear regression.
        void setRestarts​(int maxRestarts)
        Set maximum number of simplex restarts to do.
        void setStatusAndEsc​(java.lang.String ijStatusString, boolean checkEscape)
        Create output on the number of iterations in the ImageJ Status line, e.g.
        void setWeights​(double[] weights)
        Sets weights of the data points.
        double userFunction​(double[] params, double dummy)
        This function is called by the Minimizer and calculates the sum of squared residuals for given parameters.
        • Methods inherited from class java.lang.Object

          clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
      • Field Detail

        • STRAIGHT_LINE

          public static final int STRAIGHT_LINE
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • POLY2

          public static final int POLY2
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • POLY3

          public static final int POLY3
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • POLY4

          public static final int POLY4
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • EXPONENTIAL

          public static final int EXPONENTIAL
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • POWER

          public static final int POWER
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • LOG

          public static final int LOG
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • RODBARD

          public static final int RODBARD
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • GAMMA_VARIATE

          public static final int GAMMA_VARIATE
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • LOG2

          public static final int LOG2
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • RODBARD2

          public static final int RODBARD2
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • EXP_WITH_OFFSET

          public static final int EXP_WITH_OFFSET
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • GAUSSIAN

          public static final int GAUSSIAN
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • EXP_RECOVERY

          public static final int EXP_RECOVERY
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • INV_RODBARD

          public static final int INV_RODBARD
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • EXP_REGRESSION

          public static final int EXP_REGRESSION
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • POWER_REGRESSION

          public static final int POWER_REGRESSION
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • POLY5

          public static final int POLY5
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • POLY6

          public static final int POLY6
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • POLY7

          public static final int POLY7
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • POLY8

          public static final int POLY8
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • GAUSSIAN_NOOFFSET

          public static final int GAUSSIAN_NOOFFSET
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • EXP_RECOVERY_NOOFFSET

          public static final int EXP_RECOVERY_NOOFFSET
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • CHAPMAN

          public static final int CHAPMAN
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • ERF

          public static final int ERF
          Constants for the built-in fit functions
          See Also:
          Constant Field Values
        • sortedTypes

          public static final int[] sortedTypes
          Nicer sequence of the built-in function types
        • fitList

          public static final java.lang.String[] fitList
          Names of the built-in fit functions
        • fList

          public static final java.lang.String[] fList
          Equations of the built-in fit functions
        • fMacro

          public static final java.lang.String[] fMacro
          ImageJ Macro language code for the built-in functions
        • IterFactor

          public static final int IterFactor
          Deprecated.
          now in the Minimizer class (since ImageJ 1.46f). (probably of not much value for anyone anyhow?)
          See Also:
          Constant Field Values
      • Constructor Detail

        • CurveFitter

          public CurveFitter​(double[] xData,
                             double[] yData)
          Construct a new CurveFitter.
      • Method Detail

        • doFit

          public void doFit​(int fitType)
          Perform curve fitting with one of the built-in functions doFit(fitType) does the fit quietly Use getStatus() and/or getStatusString() to see whether fitting was (probably) successful and getParams() to access the result.
        • doFit

          public void doFit​(int fitType,
                            boolean showSettings)
          Perform curve fitting with one of the built-in functions doFit(fitType, true) pops up a dialog allowing the user to set the initial fit parameters and various numbers controlling the Minimizer Use getStatus() and/or getStatusString() to see whether fitting was (probably) successful and getParams() to access the result.
        • doCustomFit

          public int doCustomFit​(java.lang.String equation,
                                 double[] initialParams,
                                 boolean showSettings)
          Fit a function defined as a macro String like "y = a + b*x + c*x*x". When showSettings is true, pops up a dialog allowing the user to set the initial fit parameters and various numbers controlling the Minimizer Returns the number of parameters, or 0 in case of a macro syntax error. Use getStatus() and/or getStatusString() to see whether fitting was (probably) successful and getParams() to access the result. For complicated fits and good performance, it is advisable to use the doCustomFit method with a (java) UserFunction, which also has more options.
        • doCustomFit

          public void doCustomFit​(UserFunction userFunction,
                                  int numParams,
                                  java.lang.String formula,
                                  double[] initialParams,
                                  double[] initialParamVariations,
                                  boolean showSettings)
          Fit a function defined in a user plugin implementing the UserFunction interface Use getStatus() and/or getStatusString() to see whether fitting was (probably) successful and getParams() to access the result. For getter performance, if possible it is advisable to first call setOffsetMultiplySlopeParams, to avoid searching for one or two parameters that can be calculated directly by linear regression.
          Parameters:
          userFunction - A class instance implementing the userFunction interface. There, the fit function hould be defined by the method userFunction(params, x). This function must allow simultaneous calls in multiple threads.
          numParams - Number of parameters of the fit function.
          formula - A String describing the fit formula, may be null.
          initialParams - Starting point for the parameters; the fit function with these parameters must not return NaN for any of the data points given in the constructor (xData). initialParams may be null, then random values are used, with repeated tries if the userFunction returns NaN.
          initialParamVariations - Each parameter is initially varied by up to +/- this value. If not given (null), initial variations are taken as 10% of initial parameter value or 0.01 for parameters that are zero. When this array is given, all elements must be positive (nonzero). See Minimizer.minimize for details. Providing this array is especially valuable if one or more initial parameters have a value of 0.
          showSettings - Displays a popup dialog for modifying the initial parameters and a few numbers controlling the minimizer.
        • setInitialParameters

          public void setInitialParameters​(double[] initialParams)
          Sets the initial parameters, which override the default initial parameters.
        • setWeights

          public void setWeights​(double[] weights)
          Sets weights of the data points. The 'weights' array must have the same length as the data arrays passed with the constructor. If the error bars of the data points are known, the weights should be proportional to 1/error^2. When weights are specified, note that 'getSumResidualsSqr' will return the weighted sum.
        • getMinimizer

          public Minimizer getMinimizer()
          Returns a reference to the Minimizer used, for accessing Minimizer methods directly. Note that no Minimizer is used if fitType is any of STRAIGHT_LINE, EXP_REGRESSION, and POWER_REGRESSION.
        • setOffsetMultiplySlopeParams

          public void setOffsetMultiplySlopeParams​(int offsetParam,
                                                   int multiplyParam,
                                                   int slopeParam)
          For improved fitting performance when using a custom fit formula, one may specify parameters that can be calculated directly by linear regression. For values not used, set the index to -1
          Parameters:
          offsetParam - Index of a parameter that is a pure offset: E.g. '0' if f(p0, p1, p2...) = p0 + function(p1, p2, ...).
          multiplyParam - Index of a parameter that is purely multiplicative. E.g. multiplyParams=1 if f(p0, p1, p2, p3...) can be expressed as p1*func(p0, p2, p3, ...) or p0 +p1*func(p0, p2, p3, ...) with '0' being the offsetparam.
          slopeParam - Index of a parameter that is multiplied with x and then summed to the function. E.g. '1' for f(p0, p1, p2, p3...) = p1*x + func(p0, p2, p3, ...) Only one, multiplyParam and slopeParam can be used (ie.e, the other should be set to -1)
        • getNumParams

          public int getNumParams()
          Get number of parameters for current fit formula Do not use before 'doFit', because the fit function would be undefined.
        • getNumParams

          public static int getNumParams​(int fitType)
          Returns the number of parameters for a given fit type, except for the 'custom' fit, where the number of parameters is given by the equation: see getNumParams(String)
        • getNumParams

          public static int getNumParams​(java.lang.String customFormula)
          Returns the number of parameters for a custom equation given as a macro String, like "y = a + b*x + c*x*x" . Restricted to 6 parameters "a" ... "f" (fitting more parameters is not likely to yield an accurate result anyhow). Returns 0 if a very basic check does not find a formula of this type.
        • f

          public final double f​(double x)
          Returns the formula value for parameters 'p' at 'x'. Do not use before 'doFit', because the fit function would be undefined.
        • f

          public final double f​(double[] p,
                                double x)
          Returns the formula value for parameters 'p' at 'x'. Do not use before 'doFit', because the fit function would be undefined.
        • f

          public static double f​(int fitType,
                                 double[] p,
                                 double x)
          Returns value of built-in 'fitType' formula value for parameters "p" at "x"
        • getParams

          public double[] getParams()
          Get the result of fitting, i.e. the set of parameter values for the best fit. Note that the array returned may have more elements than numParams; ignore the rest. May return an array with only NaN values if the minimizer could not start properly, i.e., if getStatus() returns Minimizer.INITILIZATION_FAILURE. See Minimizer.getParams() for details.
        • getResiduals

          public double[] getResiduals()
          Returns residuals array, i.e., differences between data and curve. The residuals are with respect to the real data, also for fit types where the data are modified before fitting (power&exp fit by linear regression, 'Rodbard NIH Image' ). This is in contrast to sum of squared residuals, which is for the fit that was actually done.
        • getSumResidualsSqr

          public double getSumResidualsSqr()
          Returns the sum of the residuals (may be NaN if the minimizer could not start properly i.e., if getStatus() returns Minimizer.INITILIZATION_FAILURE). If weights have been specified, each of the residuals is multiplied by the corresponding weight before summing.
        • getSD

          public double getSD()
          Returns the standard deviation of the residuals. Here, the standard deviation is defined here as the root-mean-square of the residuals times sqrt(n/(n-1)); where n is the number of points. If weights are provided, the standard deviation does not take the weights into account. With weights, the standard deviation and getSumResidualsSqr (which uses weights) are not related the usual way.
        • getRSquared

          public double getRSquared()
          Returns R^2, where 1.0 is best. For unweighted data,
                   r^2 = 1 - SSE/SSD
          
                   where:  SSE = sum of the squared errors
                           SSD = sum of the squared deviations about the mean.
                  
          For power, exp by linear regression and 'Rodbard NIH Image', this is calculated for the fit actually done, not for the residuals of the original data.
        • getFitGoodness

          public double getFitGoodness()
          Get a measure of "goodness of fit" where 1.0 is best. Approaches R^2 if the number of points is much larger than the number of fit parameters. Assumes that the data points are independent (i.e., each point having a different x value). For power, exp by linear regression and 'Rodbard NIH Image', this is calculated for the fit actually done, not for the residuals of the original data.
        • getStatus

          public int getStatus()
        • getStatusString

          public java.lang.String getStatusString()
          Get a short text with a short description of the status. Should be preferred over Minimizer.STATUS_STRING[getMinimizer().getStatus()] because getStatusString() better explains the problem in some cases of initialization failure (data not compatible with the fit function chosen)
        • getResultString

          public java.lang.String getResultString()
          Get a string with detailed description of the curve fitting results (several lines, including the fit parameters).
        • setRestarts

          public void setRestarts​(int maxRestarts)
          Set maximum number of simplex restarts to do. See Minimizer.setMaxRestarts for details.
        • setMaxError

          public void setMaxError​(double maxRelError)
          Set the maximum error. by which the sum of residuals may deviate from the true value (relative w.r.t. full sum of rediduals). Possible range: 0.1 ... 10^-16
        • setStatusAndEsc

          public void setStatusAndEsc​(java.lang.String ijStatusString,
                                      boolean checkEscape)
          Create output on the number of iterations in the ImageJ Status line, e.g. " 50 (max 750); ESC to stop"
          Parameters:
          ijStatusString - Displayed in the beginning of the status message. No display if null. E.g. "Curve Fit: Iteration "
          checkEscape - When true, the Minimizer stops if escape is pressed and the status becomes ABORTED. Note that checking for ESC does not work in the Event Queue thread.
        • getIterations

          public int getIterations()
          Get number of iterations performed. Returns 1 in case the fit was done by linear regression only.
        • getMaxIterations

          public int getMaxIterations()
          Get maximum number of iterations allowed (sum of iteration count for all restarts)
        • setMaxIterations

          public void setMaxIterations​(int maxIter)
          Set maximum number of iterations allowed (sum of iteration count for all restarts)
        • getRestarts

          public int getRestarts()
          Get maximum number of simplex restarts to do. See Minimizer.setMaxRestarts for details.
        • getXPoints

          public double[] getXPoints()
          returns the array with the x data
        • getYPoints

          public double[] getYPoints()
          returns the array with the y data
        • getFit

          public int getFit()
          returns the code of the fit type of the fit performed
        • getName

          public java.lang.String getName()
          returns the name of the fit function of the fit performed
        • getFormula

          public java.lang.String getFormula()
          returns a String with the formula of the fit function used
        • getMacroCode

          public java.lang.String getMacroCode()
          Returns macro code of the form "y = ...x" for the fit function used. Note that this is not neccessarily the equation acutally used for the fit (for the various "linear regression" types and RODBARD2, the fit is done differently). Note that no macro code may be avialable for custom fits using the UserFunction interface.
        • getSortedFitList

          public static java.lang.String[] getSortedFitList()
          Returns an array of fit names with nicer sorting
        • getFitCode

          public static int getFitCode​(java.lang.String fitName)
          Returns the code for a fit with given name as defined in fitList, or -1 if not found
        • userFunction

          public final double userFunction​(double[] params,
                                           double dummy)
          This function is called by the Minimizer and calculates the sum of squared residuals for given parameters. To improve the efficiency, simple linear dependencies are solved directly by linear regression; in that case the corresponding parameters are modified. This effectively reduces the number of free parameters by one or two and thereby significantly improves the performance of minimization.
          Specified by:
          userFunction in interface UserFunction
          Parameters:
          params - When minimizing, array of variables. For curve fit array of fit parameters. The array contents should not be modified. Note that the function can get an array with more elements then needed to specify the parameters. Ignore the rest (and don't modify them).
          dummy - For a fit function, the independent variable of the function. Ignore it when using the minimizer.
          Returns:
          The result of the function.
        • getMax

          public static int getMax​(double[] array)
          Gets index of highest value in an array.
          Parameters:
          array - the array.
          Returns:
          Index of highest value.
        • getPlot

          public Plot getPlot()
        • getPlot

          public Plot getPlot​(int points)