ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. Erratum

T. Weitkamp, D. Haas, D. Wegrzynek and A. Rack

J. Synchrotron Rad. (2013). 20, 205

Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.

Crystallography Journals Online is available from journals.iucr.org
ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. Erratum

T. Weitkamp,a* D. Haas,b,c D. Wegrzynek,d‡ and A. Racke*e

aSynchrotron Soleil, Gif-sur-Yvette, France, bInstitute for Synchrotron Radiation/ANKA Light Source, Karlsruhe, Germany, cHochschule Darmstadt, Darmstadt, Germany, dInternational Atomic Energy Agency, Seibersdorf, Austria, and eEuropean Synchrotron Radiation Facility, Grenoble, France.

E-mail: weitkamp@synchrotron-soleil.fr, arack@snafu.de

An equation in the paper by Weitkamp et al. [(2011), J. Synchrotron Rad. 18, 617–629] is corrected.

There was a mistake in equation (6) in the paper by Weitkamp et al. (2011). The equation should read

$$\varphi(x, y) = \frac{\delta}{2\beta} \ln \left(\frac{\mathcal{F}^{-1} \left[\mathcal{F} \left(\frac{I(x, y) - I_0(x, y)}{I_0(x, y)} \right) \right]}{1 + \frac{\alpha}{\delta (4\pi \beta)^2} (u^2 + v^2)} \right).$$ \tag{6}$$

References

‡ Present address: University of Science and Technology, Kraków, Poland.