Writing ImageJ Plugins—A Tutorial

Werner Bailer*
ijtutorial@fh-hagenberg.at’

Upper Austria University of Applied Sciences
Dept. of Media Technology and Design
Hagenberg, Austriat

Version 1.6
Based on ImageJ Release 1.28
June 26, 2003

Contents

1 Getting Started 3
1.1 About ImageJ 3
1.2 About this Tutorial 3
1.3 Setting up your Environment o000 4
1.4 Updating ImageJ 5

2 ImageJ Class Structure 6

3 The Plugin Concept of ImagelJ 8
3.1 Typesof Plugins 8
3.2 Interfaces e 8
3.3 Plugins Folder—Installing Plugins 9
3.4 A Sample Plugin (Example) 10
3.5 Recording Plugins L 11
3.6 Compiling and Running Pluglns 11
3.7 Integrating Plugins into the ImageJ GUL 13

4 Image Representation in ImagelJ 13
4.1 Typesof Images 13
4.2 Tmages o e e 13
4.3 Processorso 15
4.4 Accessing Pixel Values oL 15
4.5 Regions of Interest Lo 17

*The author is now with the Institute of Information Systems and Information Management at Joanneum
Research GmbH. in Graz, Austria.

"This document can be downloaded from www.fh-hagenberg.at/mtd/depot/imaging/imagej/

tFachhochschule Hagenberg, Medientechnik und -design

Version 1.6

4.6 Creating New Images
4.7 Displaying Images L
4.8 Colorlnverter Plugln (Example)
4.9 Stacks
4.10 StackAverage Plugln (Example)
4.11 Additional Reference

ImageJ’s Utility Methods and Image Conversion

5.1 (Error) Messages
5.2 ImageJ Window, Status Bar and Progress Bar
5.3 Userinput
5.4 Calling Menu Commands
5.5 Calling Other Pluglns
5.6 MessageTest Plugln (Example) 0000000
5.7 More Utilities e
5.8 Image Type Conversion

Windows

6.1 PluglnFrame
6.2 GenericDialog
6.3 FrameDemo Plugln (Example)
6.4 ImageWindow L L L
6.5 ImageCanvas
6.6 Subclasses of ImageWindow
6.7 Event Handling (Example)

Advanced Topics
7.1 Data Import/Export
7.2 Using the ImagelJ Library outside ImageJ

Troubleshooting

8.1 ImageJ runs out of memory.o
8.2 A plugin is not displayed in ImageJ’s plugins menu.
8.3 When you call the “Plugins/Compile and Run ...” menu
8.4 ImageJ throws an exception in a web application (Unix/Linux)

Frequently Asked Questions
9.1 How to change the URL for the sample images
9.2 How to include user plugins when running ImageJ as applet?

10 Further Resources

10.1 API Documentation, Source Code
10.2 Plugins Page
10.3 ImageJ Mailing List
10.4 Java Resources e e e

Writing ImageJ Plugins—A Tutorial

30
30
30
32
32
32
32
33
34

35
36
36
38
39
40
40
41

43
43
44

47
47
48
48
48

48
48
49

49
49
49
49
49

Version 1.6

1 Getting Started

1.1 About ImageJ'

ImageJ is a public domain Java image processing program inspired by NIH Image for the
Macintosh. It runs, either as an online applet or as a downloadable application, on any
computer with a Java 1.1 or later virtual machine.

It can display, edit, analyze, process, save and print 8-bit, 16-bit and 32-bit images. It
can read many image formats including TIFF, GIF, JPEG, BMP, DICOM, FITS and “raw”.
It supports “stacks”, a series of images that share a single window. It is multithreaded, so
time-consuming operations such as image file reading can be performed in parallel with other
operations.

It can calculate area and pixel value statistics of user-defined selections. It can measure
distances and angles. It can create density histograms and line profile plots. It supports
standard image processing functions such as contrast manipulation, sharpening, smoothing,
edge detection and median filtering.

It does geometric transformations such as scaling, rotation and flips. Images can be
zoomed up to 32:1 and down to 1:32. All analysis and processing functions are available at any
magnification factor. The program supports any number of windows (images) simultaneously,
limited only by available memory.

Spatial calibration is available to provide real world dimensional measurements in units
such as millimeters. Density or gray scale calibration is also available.

ImageJ was designed with an open architecture that provides extensibility via Java plu-
gins. Custom acquisition, analysis and processing plugins can be developed using ImagelJ’s
built in editor and Java compiler. User-written plugins make it possible to solve almost any
image processing or analysis problem.

ImageJ is being developed on Mac OS X using its built in editor and Java compiler,
plus the BBEdit editor and the Ant build tool. The source code is freely available. The
author, Wayne Rasband (wayne@codon.nih.gov), is at the Research Services Branch, National
Institute of Mental Health, Bethesda, Maryland, USA.

1.2 About this Tutorial

This tutorial is an introduction to writing plugins for ImageJ. It explains the concept of
plugins in ImageJ, starting with the sample plugins that are part of the ImageJ distribution,
and covers those parts of the ImageJ API, which are essential for writing plugins. A reference
of the most important classes, methods and constants is provided and some advanced topics
are discussed.

A basic knowledge of the Java programming language is required. (Resources for Java
beginners can be found in section 10.4). You should also try to get familiar with the use
of ImageJ before you start writing plugins. The ImageJ documentation can be found at
http://rsb.info.nih.gov/ij/docs/index.html, including two handouts by Larry Reinking.

Plugins which just consist of a sequence of ImageJ commands can be recorded using
the plugin recorder which generates Java code (cf. Section 3.5). Another alternative is the
JavaScript editor by Kas Thomas (http://rsb.info.nih.gov/ij/plugins/javascript.html), which
allows controlling ImageJ using JavaScript.

Description taken from http://rsb.info.nih.gov/ij/docs/intro.html

Writing ImageJ Plugins—A Tutorial 3

Version 1.6

For the development of plugins you need ImageJ and a Java compiler. You can write
your plugins using ImageJ’s built-in editor or any other text editor or Java IDE (Integrated
Development Environment). You can compile them using a Java compiler of your choice or
inside ImageJ.

1.3 Setting up your Environment

For running ImageJ you need a the ImageJ class and configuration files, a Java Runtime
Environment (JRE) and for compiling your own plugins a Java compiler with the required
libraries, as for example included in the Java 2 SDK Standard Edition (J2SE) from Sun
Microsystems. Depending on the ImageJ distribution you are using, some or all of this may
be included.

1.3.1 Installing ImageJ

The latest distribution of ImageJ can be downloaded from
http://rsb.info.nih.gov/ij/download.html

In the following the installation of ImageJ will be described briefly for different operating
systems. More detailed and up-to-date installation instructions can be found at
http://rsb.info.nih.gov/ij/docs/install

If you already have a JRE (and a Java compiler) installed on your computer and you
are familiar with Java, you just need to download the ImageJ class and configuration files
which are available as a ZIP archive. To run ImageJ, add ij.jar to your classpath and
execute class ij.ImageJ. This works for all operating systems for which there is no specific
distribution but for which a Java runtime environment is available.

Windows

The Windows version is available as a self-extracting ZIP archive which includes a Java
Runtime Environment (JRE) and a Java compiler. To install it, run the self-extracting file
you have downloaded. In the destination directory you will find a shortcut called “ImageJ”.
Double-click it to run ImagelJ.

Note: The “Image]” shortcut assumes that the ImageJ folder is C:\ImageJ. If this is
not the case, right-click on the shortcut and edit the “Target:” and “Start in” fields of the
“Shortcut” properties to reflect the new location. For example, if the ImageJ folder is located
in the C:\Program Files folder, change these fields to

"C:\Program Files\ImageJ\jre\bin\jrew.exe" -mx80m cp ij.jar ij.Imagel
and
C:\Program Files\ImageJ

This shortcut opens ImageJ without a console window in the background. If you want to use
System.out and System.err to write debug information to the console, start ImageJ using
the shortcut “ImageJ (old shortcut)”.

Mac OS

To run ImageJ on Mac OS you need the Mac OS Runtime for Java (MRJ). It can be down-
loaded from http://www.apple.com/java. Installation instructions can be found on the down-
load page.

Writing ImageJ Plugins—A Tutorial 4

Version 1.6

The ImageJ distribution is a self-extracting archive (If it does not expand automatically
after downloading, use e.g. Stufflt Expander). Double-click the “ImageJ” icon in the newly
created folder to run it.

Mac OS X

Download the Mac OS X tar. gz file and double-click it to expand. Double-click the “ImageJ”
icon to run ImageJ. Alternatively, you can also run ImageJ from the command line using

java -jar -mx128m ImagelJ.app/Contents/Resources/Java/ij.jar

Running ImageJ from the command line has the advantage, that you can use System.out
and System.err to write debug information to the console.

Linux x86

Download the Linux x86 tar.gz file, which contains Suns Java Runtime Environment 1.3.1,
and extract it using e. g.

tar xvzf 1j123-x86.tar.gz

and execute the run script in the ImageJ directory.

1.3.2 Installing the Java Compiler

Installing a Java compiler is only necessary if it is not included in the ImageJ distribution
or provided by the operating system. In any case, also if you are using an operating system
which is not mentioned here but for which a Java compiler is available, you can use any Java
compiler of your choice to compile your plugins (e.g. J2SE SDK from Sun Microsystems,
which you can download from http://www.javasoft.com).
Details on compiling plugins can be found in Section 3.6.

Windows

The ImageJ distribution for Windows includes a Java compiler which allows you to compile
plugins from inside ImagelJ.

Mac OS

In addition to the MRJ you need the MRJ SDK. It can be downloaded from http://developer.
apple.com/java. Run the installer you have downloaded. After the installation it is possible
to compile plugins inside ImagelJ.

Mac OS X

A Java compiler is included in Mac OS X Java, so you can compile plugins from inside
Imagel.

Linux

The ImageJ distribution for Linux includes a Java compiler which allows you to compile
plugins from inside ImagelJ.

1.4 Updating ImageJ

You can update ImageJ by replacing the ImageJ JAR file (ij.jar). The latest version is
available at http://rsb.info.nih.gov/ij/upgrade/index.html. Just replace your existing ij.jar
file with the one you downlaoded. The ij.jar file can be found directly in your Imagel
folder. On Mac OS X, it can be found in ImageJ.app/Contents/Resources/Java where
ImageJ.app is the directory that Finder displays as the ImageJ application.

Writing ImageJ Plugins—A Tutorial)

Version 1.6

Note: The ImageJ JAR file also contains the configuration file IJProps.txt. If you want

to save your settings, extract the file from your old ij.jar and replace it in the new one.
You can edit JAR files with most ZIP utilities (e.g. WinZip).

2

ImageJ Class Structure

This is an overview of the class structure of ImagelJ. It is by far not complete, just the most
important classes for plugin programming are listed and briefly described. More detailed
descriptions of classes and methods can be found in Sections 3 through 6. A UML class
diagram is available at http://rsb.info.nih.gov/ij/developer/diagram.html.

1]

ij

ImageJApplet
ImageJ can be run as applet or as application. This is the applet class of ImageJ.
The advantage of running ImageJ as applet is that it can be run (remotely) inside
a browser, the biggest disadvantage is the limited access to files on disk because of
the Java applet security concept, if the applet is not signed.

ImageJ
The main class of the ImageJ application. This class contains the run method,
which is the program’s main entry point, and the ImageJ main window.

Executer
A class for executing menu commands in separate threads (without blocking the rest
of the program).

1J
A class containing many utility methods (discussed in Section 5).
ImagePlus
The representation of an image in ImageJ, which is based on an ImageProcessor
(see Section 4).
ImageStack
An ImageStack is an expandable array of images (see Section 4).
WindowManager
This class manages the list of open windows.
.gui
ProgressBar
A bar in the ImageJ main window that informs graphically about the progress of a
running operation.
GenericDialog
A modal dialog that can be customized and called on the fly, e.g. for getting user
input before running a plugin (see Section 6).
NewImage
A class for creating a new image of a certain type from scratch.
Roi

A class representing a region of interest of an image. If supported by a plugin, it
can process just the ROI and not the whole image.

Writing ImageJ Plugins—A Tutorial 6

Version 1.6

ij.d

1]

1]

1]

1]

i3

ImageCanvas
A canvas derived from java.awt.Canvas on which an image is painted (see Section
6).

ImageWindow

A frame derived from java.awt.Frame that displays an image (see Section 6).

StackWindow

An ImageWindow designed for displaying stacks (see Section 6).
HistogramWindow

An ImageWindow designed for displaying histograms (see Section 6).

PlotWindow
An ImageWindow designed for displaying plots (see Section 6).

io
This package contains classes for reading/decoding and writing/encoding image files.

.measure
Contains classes for measurements.

.plugin
Most ImageJ menu commands are implemented as plugins and can therefore be
found in the classes of ij.plugin and its subpackages.

PlugIn
This interface has to be implemented by plugins, that do not require an image as
input (see Section 3).

Converter
Implements a method for conveniently converting an ImagePlus from one type to
another (see Section 5.8)

.plugin.filter

PlugInFilter
This interface has to be implemented by plugins, that require an image as input (see
Section 3).

.plugin.frame

PlugInFrame

A window class that can be subclassed by a plugin (see Section 3).

.process

ImageConverter
A class that contains methods for converting images from one image type to another.
ImageProcessor

An abstract superclass of image processors for certain image types. An image pro-
cessor provides methods for actually working on the image data (see Section 4).

Writing ImageJ Plugins—A Tutorial 7

Version 1.6

StackConverter

A class for converting stacks from one image type to another.

StackProcessor

A class for processing image stacks.

ij.text

This package contains classes for displaying and editing text.

3 The Plugin Concept of ImageJ

The functions provided by ImageJ’s menu commands (most of them are in fact plugins
themselves) can be extended by user plugins. These plugins are Java classes implementing the
necessary interfaces that are placed in a certain folder. Plugins can be written with ImagelJ’s
built-in plugin editor (accessible via the menus “Plugins/New...” and “Plugins/Edit...”),
with a text editor of your choice or they can be generated using ImageJ’s plugin recorder. In
any case plugins can be compiled and run inside ImageJ. Plugins found by ImageJ are placed
in the Plugins menu or (since version 1.20) in submenus of it.

3.1 Types of Plugins

There are basically two types of plugins: those that do not require an image as input (imple-
menting the interface PlugIn) and plugin filters, that require an image as input (implementing
the interface PlugInFilter).

3.2 Interfaces
3.2.1 Plugln

This interface has just one method:

void run(java.lang.String arg)
This method runs the plugin, what you implement here is what the plugin actually
does. arg is a string passed as an argument to the plugin, and it can also be an
empty string. You can install plugins more than once, so that each of the commands
can call the same plugin class with a different argument.

3.2.2 PluglInFilter

This interface also has a method

void run(ImageProcessor ip)
This method runs the plugin, what you implement here is what the plugin actually
does. It takes the image processor it works on as an argument. The processor can
be modified directly or a new processor and a new image can be based on its data,
so that the original image is left unchanged. The original image is locked while the
plugin is running. In contrast to the PlugIn interface the run method does not take
a string argument. The argument can be passed using

Writing ImageJ Plugins—A Tutorial 8

Version 1.6

int setup(java.lang.String arg, ImagePlus imp)
This method sets up the plugin filter for use. The arg string has the same function
as in the run method of the PlugIn interface. You do not have to care for the
argument imp—this is handled by ImageJ and the currently active image is passed.
The setup method returns a flag word that represents the filters capabilities (i.e.
which types of images it can handle).
The following capability flags are defined in PlugInFilter:

static int DOES_16 The plugin filter handles 16 bit grayscale images.

static int DOES_32 The plugin filter handles 32 bit floating point grayscale images.
static int DOES_8C The plugin filter handles 8 bit color images.

static int DOES_8G The plugin filter handles 8 bit grayscale images.

static int DOES_ALL The plugin filter handles all types of images.

static int DOES_RGB The plugin filter handles RGB images.

static int DOES_STACKS The plugin filter supports stacks, ImageJ will call it for each slice
in a stack.

static int DONE If the setup method returns DONE the run method will not be called.
static int NO_CHANGES The plugin filter does not change the pixel data.

static int NO_IMAGE REQUIRED The plugin filter does not require an image to be open.
static int NO_UNDO The plugin filter does not require undo.

static int ROI_REQUIRED The plugin filter requires a region of interest (ROI).

Static int STACK_REQUIRED The plugin filter requires a stack.

static int SUPPORTS_MASKING Plugin filters always work on the bounding rectangle of the
ROL. If this flag is set and there is a non-rectangular ROI, ImageJ will restore the pixels
that are inside the bounding rectangle but outside the ROL.

3.3 Plugins Folder—Installing Plugins

ImageJ user plugins have to be located in a folder called plugins, which is a subfolder of
the ImageJ folder. But only class files in the plugins folder with at least one underscore in
their name appear automatically in the “Plugins” menu. Since version 1.20 it is also possible
to create subfolders of the plugins folder and place plugin files there. The subfolders are
displayed as submenus of ImageJ’s “Plugins” menu.

To install a plugin (e.g. one you have downloaded from the ImageJ plugins page) copy
the .class file into the plugins folder or one of its subfolders. The plugin will appear in
the plugin menu (or one of its submenus) the next time you start ImageJ. You can add it to
a menu and assign a shortcut to it using the “Plugins/ Shortcut/ Install plugin...”
this case, the plugin will appear in the menu without restarting ImageJ.

Alternatively, if you have the source code of a plugin, you can compile and run it from
within ImageJ. More about compiling and running plugins can be found in Section 3.6.

menu. In

Writing ImageJ Plugins—A Tutorial 9

Version 1.6

Since ImageJ 1.24 you can specify the plugins directory using the plugins.dir property.
On Windows, change the “Target” field of the shortcut to

"C:\Program Files\ImageJ\jre\bin\jrew.exe" -mx80m cp ij.jar
-Dplugins.dir=c:\data ij.ImagelJ

Under Linux, start ImageJ with

./jre/bin/jre -mx80m -cp ij.jar:tools.jar -Dplugins.dir=/home/wayne
ij.ImagelJ

3.4 A Sample Plugin (Example)

If you look into the plugins folder right after installing ImageJ you will find the sample plugins
that come with ImageJ. In this section we will take a closer look at one of them. Inverter_
is a plugin that inverts 8 bit grayscale images.

Here we import the necessary packages, ij for the basic ImagelJ classes, ij.process for
image processors and the interface 1j.plugin.filter.PlugInFilter is the interface we have
to implement for a plugin filter.

import ij.*;

import ij.plugin.filter.PluglnFilter;
import ij.process.x*;

import java.awt.x*;

Note: Do not use a package statement inside plugin classes—they have to be in the default
package!

Our plugin has the necessary underscore appended. It needs an image as input, so it has to
implement PlugInFilter:

public class Inverter_ implements PlugInFilter {

What comes next is the method for setting up the plugin. For the case that we get
“about” as argument, we call the method showAbout that displays an about dialog. In that
case we return DONE because we do not want the run method to be called. In any other case
we return the capability flags for this plugin: It works on 8 bit grayscale images, also on
stacks and in the case that there is a ROI (region of interest) defined the plugin will just
work on the masked region (ROI).

public int setup(String arg, ImagePlus imp) {
if (arg.equals("about")) {
showAbout () ;
return DONE;
}
return DOES_8G+DOES_STACKS+SUPPORTS_MASKING;
}

The run method implements the actual function of the plugin. We get the processor of
the original image. Then we get the image as an array of pixels from the processor—as it is
a 8 bit grayscale image (= 256 possible values) we can use a byte array. Note that the pixel
array is one-dimensional, containing one scan line after the other. Then we read the width
of the image (because we need to know the length of a scan line) and the bounding rectangle
of the ROI.

Writing ImageJ Plugins—A Tutorial 10

Version 1.6

public void run(ImageProcessor ip) {
byte[] pixels = (bytell)ip.getPixels();
int width = ip.getWidth();
Rectangle r = ip.getRoi();

We now declare two variables to avoid calculating the position in the one dimensional image
array every time. In the outer loop we go from the first line of the ROI to its last line.
We calculate the offset (= position of the first pixel of the current scan line) and go in the
inner loop from the left most pixel of the ROI to its right most pixel. We assign the current
position to i and invert the pixel value by subtracting its value from 255.

int offset, i;
for (int y=r.y; y<(r.y+r.height); y++) {
offset = y*width;
for (int x=r.x; x<(r.x+r.width); x++) {
i = offset + x;
pixels[i] = (byte) (255-pixels[i]);

}

showAbout uses the static method showMessage from class IJ to display a text in a message
box. The first parameter specifies its title, the second the message text.

void showAbout() {
IJ.showMessage("About Inverter_...",
"This sample plugin filter inverts 8-bit images. Look\n" +
"at the ’Inverter_.java’ source file to see how easy it is\n" +
"in ImageJ to process non-rectangular ROIs, to process\n" +
"all the slices in a stack, and to display an About box."

)

3.5 Recording Plugins

If your plugin shall just execute a sequence of ImageJ menu commands, you do not have to
write your plugin, you can simply record it. “Plugins/Record...” opens a window and records
your actions (menu commands, regions of interest, etc.) as long as the “Record” checkbox is
checked. The pseudocode of this operations will be displayed in the window. The “Create
Plugin” button generates a Java class from this pseudocode using the utility methods from
class IJ (discussed in section 5). The plugin class will be opened in the built in editor from
where you can also compile and run it. You may want to take such a generated plugin code
as a basis for writing more complex plugins.

3.6 Compiling and Running Pluglns

Now that we have looked at one of the sample plugins we want to compile and run it.

Writing ImageJ Plugins—A Tutorial 11

Version 1.6

If the Java runtime environment you are using includes a Java compiler (e.g. as in the
ImageJ distribution for Windows) or your operating system provides the Java compiler you
can compile and run plugins inside ImageJ. There are basically two ways:

e Using the menu “Plugins/Compile and run...”, which opens a file dialog which lets you
select a . java file which will be compiled into a class file and executed as plugin.

)

e Using “File/Compile and run...” in the built-in plugin editor which will compile and
run the code in the editor window.

If your plugin requires other libraries than ImageJ and the standard Java libraries, you
have to modify the classpath of your Java environment in order to have these libraries available
when compiling and running plugins. Here is how to modify the classpath:

Windows

Edit the classpath option in the “Target:” field of the of the “Shortcut” properties of the
ImageJ shortcut. The entries are separated by semicolons. For example, to use mylib. jar,
change the “Target” line to

C:\ImageJ\jre\bin\jrew.exe mx80m -cp ij.jar;toolsll.jar;mylib.jar ij.Imagel]

Mac OS

Make sure that all libraries you want to use are located in

...:System Folder:Extensions:MRJLibraries:MRJClasses or create an alias for the
library there.

Alternatively, the classpath for the application can be set in its >STR ’ (0) resource.
Mac OS X

To change the classpath used by ImagelJ, edit the com.apple.mrj.application.classpath
property in the ImageJ.app/Contents/Resources/MRJApp.properties text file, where
ImageJ.app is the directory (bundle) that the Finder displays as the ImageJ application.
You can view the files and folders in the ImageJ bundle by control-clicking on the ImageJ
application and selecting ”Show Package Contents”.

Linux, Uniz, other OS

You can modify the classpath by using the cp switch followed by the libraries to be used.
For example, to use mylib. jar, call the JVM using:

./jre/bin/jre mx80m -cp ij.jar:tools.jar:mylib.jar ij.Imagel

If you want to use this setting all the time, make the modification in the run script.

If your Java environment does not contain a Java compiler you can compile plugins on
the command line (or using a batch file or shell script respectively) under Windows, Linux
and Mac OS X. The syntax for calling the Java compiler is

javac cp ij.jar;tools.jar .\plugins\MyPlugin_ .java under Windows and
javac cp ij.jar:tools.jar ./plugins/MyPlugin_.java under Linux.

Writing ImageJ Plugins—A Tutorial 12

Version 1.6

3.7 Integrating Plugins into the ImageJ GUI

Like commands, plugins can be accessed via hot-keys. You can create a new hot-key by
selecting “Create Shortcut” from the menu “Plugins / Shortcuts”.

When we discussed the plugin interfaces we talked about arguments that can be passed to
plugins. Installing a plugin using the menu command “Plugins / Shortcuts / Install Plugin
...7 places the plugin into a selected menu, assigns a hot-key and passes an argument.
“Plugins / Shortcuts / Remove ...” removes a plugin from the menu.

4 Image Representation in ImageJ

When we looked at the sample plugin in the previous section we saw that images are repre-
sented by ImagePlus and ImageProcessor objects in ImagelJ. In this section we take a closer
look at the way images are handled by ImageJ. Methods that are not discussed in the text
but are of some importance for writing plugins can be found in the reference in Section 4.11.

4.1 Types of Images

Images are large arrays of pixel values. But it is important to know how these pixel values
should be interpreted. This is specified by the type of the image. ImageJ knows five image

types:
8 bit grayscale image can display 256 grayscales, a pixel is represented by a byte variable.

8 bit color image can display 256 colors that are specified in a lookup table (LUT), a pixel
is represented by a byte variable.

16 bit grayscale image can display 65,536 grayscales, a pixel is represented by a short
variable.

RGB color image can display 256 values per channel, a pixel is represented by an int
variable.

32 bit image floating point grayscale image, a pixel is represented by a float variable.

For information about conversion between different image types, see Section 5.8. D. Sage
and M. Unser (Biomedical Imaging Group, Swiss Federal Institute of Technology Lausanne)
contributed a package called ImageAccess, which unifies access to images regardless of data
types.2

4.2 Images

An ImagePlus is an object that represents an image. It is based on an ImageProcessor,
a class that holds the pixel array and does the actual work on the image. The type of the
ImageProcessor used depends on the type of the image. The image types are represented
by constants declared in ImagePlus:

COLOR_256 A 8 bit color image with a look-up table.

2More information can be found at http://bigwww.epfl.ch/teaching/iplabsite/.

Writing ImageJ Plugins—A Tutorial 13

Version 1.6

COLOR_RGB A RGB color image.
GRAY16 A 16 bit grayscale image.
GRAY32 A 32 bit floating point grayscale image.

GRAY8 A 8 bit grayscale image.

ImageJ displays images using a class called ImageWindow. It handles repainting, zooming,
changing masks etc.
To construct an ImagePlus use one of the following constructors:

ImagePlus ()

Default constructor, creates a new empty ImagePlus and does no initialization.

ImagePlus(java.lang.String urlString)
Constructs a new ImagePlus, loading the Image from the URL specified.
ImagePlus(java.lang.String title, java.awt.Image img)

Constructs a new ImagePlus based on a Java AWT image. The first argument is
the title of the ImageWindow that displays the image.

ImagePlus(java.lang.String title, ImageProcessor ip)
Constructs a new ImagePlus that uses the specified ImageProcessor. The first
argument is the title of the ImageWindow that displays the image.

ImagePlus(java.lang.String title, ImageStack stack)
Constructs a new ImagePlus from an ImageStack. The first argument is the title
of the ImageWindow that displays the image.
The type of an ImagePlus can be retrieved using

int getType()
Similar methods exist for getting the image dimension, the title (= name of the Image-
Window that displays this image), the AWT image that represents the ImagePlus and the file
information:

int getHeight()

int getWidth()
java.lang.String getTitle()
java.awt.Image getImage()

ij.io.FileInfo getFileInfo()
The AWT image on which the ImagePlus is based and the image’s title title can be set using

void setImage(java.awt.Image img)

void setTitle(java.lang.String title)
An ImagePlus can have a list of additional properties that can be defined by the user. They
are indexed using a string and can be any type of object. These properties can be read and
set using the methods:

java.util.Properties getProperties()

Returns this image’s Properties.

java.lang.0Object getProperty(java.lang.String key)
Returns the property associated with key.

Writing ImageJ Plugins—A Tutorial 14

Version 1.6

void setProperty(java.lang.String key, java.lang.Object value)

Adds a key-value pair to this image’s properties.

4.3 Processors

Each image is based on an image processor. The type of the processor depends on the type of
the image. You can get and set the image processor using these two methods of an ImagePlus:

ImageProcessor getProcessor()

Returns a reference to the image’s ImageProcessor.

void setProcessor(java.lang.String title, ImageProcessor ip)
Sets the image processor to the one specified.
When working with plugin filters you do not have to care about retrieving the processor
from the ImagePlus, it is passed as argument to the run method.
ImageProcessor is an abstract class. Depending on the type of the image we use a subclass
of ImageProcessor. There are five of them:

ByteProcessor
Used for 8 bit grayscale and color images. It has a subclass called BinaryProcessor
for grayscale images that only contain the pixel values 0 and 255.

ShortProcessor

Used for 16 bit grayscale images.

ColorProcessor
Used for 32 bit integer images (RGB with 8 bit per channel).

FloatProcessor
Used for 32 bit floating point images.

4.4 Accessing Pixel Values

To work with the image we need access to its pixels. We know how to get the image’s
ImageProcessor. Retrieving the pixel values can be done by using an ImageProcessor’s

java.lang.0Object getPixels()
method. It returns a reference to this image’s pixel array. As the type of this array
depends on the image type we need to cast this array to the appropriate type when
we get it:

int[] pixels = (int[]) myProcessor.getPixels()

This example would work for an RGB image. As you have noticed we get back
a one-dimensional array. It contains the image scanline by scanline. To convert a
position in this array to a (x,y) coordinate in an image, we need at least the width
of a scanline.
The width and height of an ImageProcessor can be retrieved using these methods:
int getHeight ()
int getWidth()
Now we have everything to iterate through the pixel array. As you have seen in the sample
plugin this can be done using two nested loops.

Writing ImageJ Plugins—A Tutorial 15

Version 1.6

Some cases need a bit more explanation: Reading pixels from ByteProcessor, Short-
Processor and from ColorProcessor.

Java’s byte data type is signed and has values ranging from 128 to 127, while we would
expect a 8 bit grayscale image to have values from 0 to 255. If we cast a byte variable to
another type we have to make sure, that the sign bit is eliminated. This can be done using
a binary AND operation (&):

int pix = Oxff & pixels[i];
pixels[i] = (byte) pix;

It’s the same with Java’s short data type, which is also signed and has values ranging
from —32768 to 32767, while we would expect a 16 bit grayscale image to have values from
0 to 65535. If we cast a short variable to another type we have to make sure that the sign
bit is eliminated. This can again be done using a binary AND operation:

int pix = pixels[i] & Oxffff;
pixels[i] = (short) pix;

ColorProcessors return the pixel array as an int[]. The values of the three color
components are packed into one int variable. They can be accessed as follows:

int red (int) (pixels[i] & 0x£f£0000)>>16;
(int) (pixels[i] & 0x00££00)>>8;

(int) (pixels[i] & 0x0000ff) ;

int green
int blue

pixels[i] ((red & 0xff)<<16)+((green & 0xff)<<8) + (blue & O0xff);

The pixel array you work on is a reference to the ImageProcessor’s pixel array. So any
modifications effect the ImageProcessor immediately. However, if you want the Image-
Processor to use another (perhaps newly created) array, you can do this using

void setPixels(java.lang.Object pixels)
You do not always have to retrieve or set the whole pixel array. ImageProcessor offers
some other methods for retrieving or setting pixel values:

int getPixel(int x, int y)
Returns the value of the specified pixel.
void putPixel(int x, int y, int value)
Sets the pixel at (x, y) to the specified value.
float getPixelValue(int x, int y)
Returns the value of the specified pixel.
void getColumn(int x, int y, int[] data, int length)
Returns the pixels down the column starting at (x, y) in data.
void putColumn(int x, int y, int[] data, int length)

Inserts the pixels contained in data into a column starting at (x, y).

Writing ImageJ Plugins—A Tutorial 16

Version 1.6

void getRow(int x, int y, int[] data, int length)

Returns the pixels along the horizontal line starting at (x,y) in data.

void putRow(int x, int y, int[] data, int length)
Inserts the pixels contained in data into a horizontal line starting at (x,y).
double[] getLine(int x1, int yl1, int x2, int y2)
Returns the pixels along the line with start point (x1,y1) and end point (x2,y2).
The method
int[] getPixel(int x, int y)
of ImagePlus returns the pixel value at (x,y) as a four element array.

All these methods should only be used if you intend to modify just a few pixels. If you
want to modify large parts of the image it is faster to work with the pixel array.

4.5 Regions of Interest

A plugin filter does not always have to work on the whole image. ImageJ supports regions
of interest (ROI) which can be rectangular, oval, polygonal, freeform or text selections of
regions of the image.

The bounding rectangle of the current ROI can be retrieved from the ImageProcessor
using
java.awt.Rectangle getRoi()

This makes it possible to just handle the pixels that are inside this rectangle. It is
also possible to set a processor’s ROI with

void setRoi(int x, int y, int rwidth, int rheight)
This sets the ROI to the rectangle starting at (x,y) with specified width and height.

More methods for working with ROIs can be found in ImagePlus. Remember that a
plugin filter’s run method receives an ImageProcessor as argument, but you can access the
ImagePlus in the setup method.

void setRoi(int x, int y, int width, int height)
Creates a rectangular selection starting at (x,y) with specified width and height.

void setRoi(java.awt.Rectangle r)

Creates a rectangular selection.

void setRoi(Roi roi)

Creates a selection based on the specified ROI object.
Roi getRoi()

Returns a ROI object representing the current selection.

The classes representing the different types of ROIs can be found in ij.gui. These classes
are:

FreehandROI
OvalROI
PolygonROI
ROI

TextROI

Writing ImageJ Plugins—A Tutorial 17

Version 1.6

4.6 Creating New Images

In many cases it will make sense that a plugin does not modify the original image, but creates
a new image that contains the modifications.
ImagePlus’ method

ImagePlus createImagePlus()
returns a new ImagePlus with this ImagePlus’ attributes, but no image. A similar
function is provided by ImageProcessor’s

ImageProcessor createProcessor(int width, int height)
which returns a new, blank processor with specified width and height which can be
used to create a new ImagePlus using the constructor

ImagePlus(java.lang.String title, ImageProcessor ip)
The class NewImage offers some useful static methods for creating a new ImagePlus of a
certain type.
static ImagePlus createByteImage(java.lang.String title, int width, int
height, int slices, int fill)
Creates a new 8 bit grayscale or color image with the specified title, width and height
and number of slices. £i11 is one of the constants listed below that determine how
the image is initially filled.

static ImagePlus createFloatImage(java.lang.String title, int width, int
height, int slices, int fill)
Creates a new 32 bit floating point image with the specified title, width and height
and number of slices. £i11 is one of the constants listed below that determine how
the image is initially filled.
static ImagePlus createRGBImage(java.lang.String title, int width, int
height, int slices, int fill)
Creates a new RGB image with the specified title, width and height and number of
slices. £ill is one of the constants listed below that determine how the image is
initially filled.

static ImagePlus createShortImage(java.lang.String title, int width, int
height, int slices, int fill)
Creates a new 16 bit grayscale image with the specified title, width and height and
number of slices. £i11 is one of the constants listed below that determine how the
image is initially filled.
These are the possible values for the £i1l argument defined in class NewImage:

FILL BLACK Fills the image with black color.
FILL WHITE Fills the image with white color

FILL_RAMP Fills the image with a horizontal grayscale ramp.

There are two methods to copy pixel values between different ImageProcessors:

Writing ImageJ Plugins—A Tutorial 18

Version 1.6

void

void

copyBits(ImageProcessor ip, int xloc, int yloc, int mode)
Copies the image represented by ip to xloc, yloc using the specified blitting mode.
This is one of the following constants defined in the interface Blitter:

ADD destination = destination+source

AND destination = destination AND source
AVERAGE destination = (destination+source)/2
COPY destination = source

COPY_INVERTED destination = 255—source
COPY_TRANSPARENT White pixels are assumed as transparent.
DIFFERENCE destination = |destination—source|
DIVIDE destination = destination/source

MAX destination = maximum/(destination,source)
MIN destination = minimum/(destination,source)
MULTIPLY destination = destination * source

OR destination = destination OR source
SUBTRACT destination = destination—source

XOR destination = destination XOR source

insert (ImageProcessor ip, int xloc, int yloc)

Inserts the image contained in ip at (xloc, yloc).

If you need a Java AWT image, you can retrieve it from the ImageProcessor using

java

.awt.Image createImage()

The same function is provided by ImagePlus’ method

java

.awt.Image getImage()

4.7 Displaying Images

Now that we can modify images we need to know how the changes can be made visible.
ImageJ uses a class called ImageWindow to display ImagePlus images. ImagePlus contains
everything that is necessary for updating or showing newly created images.

void

void

draw()

Displays the image.

draw(int x, int y, int width, int height)

Displays the image and draws the ROI outline using a clipping rectangle.

Writing ImageJ Plugins—A Tutorial 19

Version 1.6

void updateAndDraw()
Updates the image from the pixel data in its associated ImageProcessor and dis-
plays it.

void updateAndRepaintWindow ()
Calls updateAndDraw to update from the pixel data and draw the image. The
method also repaints the image window to force the information displayed above
the image (dimension, type, size) to be updated.

void show()

Opens a window to display the image and clears the status bar.

void show(java.lang.String statusMessage)

Opens a window to display the image and displays statusMessage in the status bar.

void hide()
Closes the window, if any, that is displaying the image.

4.8 ColorInverter PlugIn (Example)

With the knowledge of the previous sections we can write our first own plugin. We will
modify the Inverter_ plugin so that it handles RGB images. It will invert the colors of the
pixels of the original image’s ROI and display the result in a new window.

As mentioned before, we start from the existing plugin Inverter_. First of all we modify
the class name.

import ij.*;

import ij.gui.x*;

import ij.process.x*;

import ij.plugin.filter.PluglnFilter;
import java.awt.x*;

public class ColorInverter_ implements PlugInFilter {

Don’t forget to rename the file to ColorInverter_.java, otherwise you won’t be able to
compile it!

We want to handle RGB files, we do not want to apply it to stacks, we want to support
non-rectangular ROIs and because we display the results in a new image we do not modify
the original, so we change the capabilities returned by the setup method to DOES_RGB +
SUPPORTS_MASKING + NO_CHANGES.

public int setup(String arg, ImagePlus imp) {
if (arg.equals("about")) {
showAbout () ;
return DONE;
}
return DOES_RGB+SUPPORTS_MASKING+NO_CHANGES;
}

The run method will do the actual work.

Writing ImageJ Plugins—A Tutorial 20

Version 1.6

public void run(ImageProcessor ip) {

First we save the dimension and the ROI of the original image to local variables.

int w = ip.getWidth();
int h = ip.getHeight();
Rectangle roi = ip.getRoi();

We want to have the result written to a new image, so we create a new RGB image of the
same size, with one slice and initially black and get the new image’s processor.

ImagePlus inverted = NewImage.createRGBImage("Inverted image", w, h,
1, NewImage.FILL_BLACK);
ImageProcessor inv_ip = inverted.getProcessor();

Then we copy the image from the original ImageProcessor to (0,0) in the new image, using
COPY blitting mode (this mode just overwrites the pixels in the destination processor). We
then get the pixel array of the new image (which is of course identical to the old one). It’s a
RGB image, so we get an int array.

inv_ip.copyBits(ip,0,0,Blitter.COPY) ;
int[] pixels = (int[]) inv_ip.getPixels();

We now go through the bounding rectangle of the ROI with two nested loops. The outer
one runs through the lines in the ROI, the inner one through the columns in each line. The
offset in the one-dimensional array is the start of the current line (= width of the image X
number of scanlines).

for (int i=roi.y; i<roi.y+roi.height; i++) {
int offset =ixw;
for (int j=roi.x; j<roi.x+roi.width; j++) {

In the inner loop we calculate the position of the current pixel in the one-dimensional array
(we save it in a variable because we need it twice). We then get the value of the current
pixel. Note that we can access the pixel array of the new image, as it contains a copy of the
old one.

int pos = offset+j;
int ¢ = pixels[pos];

We extract the three color components as described above.

int r = (c&0xf£0000)>>16;
int g = (c&0x00££00)>>8;
int b = (c&0x0000£ff);

We invert each component by subtracting it’s value from 255. Then we pack the modified
color components into an integer again.

Writing ImageJ Plugins—A Tutorial 21

Version 1.6

r=255-r;

g=255-g;

b=255-b;

pixels[pos] = ((r & Oxff) << 16) +
((g & Oxff) << 8) +
(b & 0xff);

}

We have now done all necessary modifications to the pixel array. Our image is still not visible,
so we call show to open an ImageWindow that displays it. Then we call updateAndDraw to
force the pixel array to be read and the image to be updated.

inverted.show() ;
inverted.updateAndDraw() ;

4.9 Stacks

ImageJ supports expandable arrays of images called image stacks, that consist of images
(slices) of the same size. In a plugin filter you can access the currently open stack by retrieving
it from the current ImagePlus using

ImageStack getStack()
ImagePlus also offers a method for creating a new stack:

ImageStack createEmptyStack()
Returns an empty image stack that has the same width, height and color table as
this image.
Alternatively you can create an ImageStack using one of these constructors:
ImageStack(int width, int height)

Creates a new, empty image stack with specified height and width.

ImageStack(int width, int height, java.awt.image.ColorModel cm)
Creates a new, empty image stack with specified height, width and color model.
To set the newly created stack as the stack of an image use

void setStack(java.lang.String title, ImageStack stack)
The number of slices of a stack can be retrieved using the methods

int getSize()
of class ImageStack or

int getStackSize()
of class ImagePlus.
The currently displayed slice of an ImagePlus can be retrieved and set using

int getCurrentSlice()

void setSlice(int index)
A stack offers several methods for retrieving and setting its properties:

Writing ImageJ Plugins—A Tutorial 22

Version 1

.6

int getHeight ()

Returns the height of the stack.

int getWidth()

java.

void

Returns the width of the stack.

lang.Object getPixels(int n)

Returns the pixel array of the specified slice, where n is a number from 1 to the
number of slices. See also Section 4.4.

setPixels(java.lang.0Object pixels, int n)

Assigns a pixel array to the specified slice, where n is a number from 1 to the number
of slices. Section 4.4.

ImageProcessor getProcessor(int n)

java.

void

java.

void

Returns an ImageProcessor for the specified slice, where n is a number from 1 to
the number of slices. See also Section 4.3.

lang.String getSlicelabel(int n)

Returns the label of the specified slice, where n is a number from 1 to the number
of slices.

setSlicelLabel(java.lang.String label, int n)

Sets the label of the specified slice, where n is a number from 1 to the number of
slices.

awt.Rectangle getRoi()

Returns the bounding rectangle of the stack’s ROI. For more information on ROIs,
see Section 4.5.

setRoi(java.awt.Rectangle roi)

Sets the stacks ROI to the specified rectangle. For more information on ROIs, see
Section 4.5.

Slices can be added to and removed from the ImageStack using these methods:

void

void

void

void

void

addSlice(java.lang.String slicelLabel, ImageProcessor ip)

Adds the image represented by ip to the end of the stack.
addSlice(java.lang.String slicelabel, ImageProcessor ip, int n)
Adds the image represented by ip to the stack following slice n.
addSlice(java.lang.String slicelLabel, java.lang.Object pixels)
Adds an image represented by its pixel array to the end of the stack.
deletelLastSlice()

Deletes the last slice in the stack.

deleteSlice(int n)

Deletes the specified slice, where n is in the range 1...number of slices.

4.10 StackAverage Plugln (Example)

This example shows how to handle stacks. It calculates the average values of pixels located
at the same position in each slice of the stack and adds a slice showing the average values to
the end of the stack.

Writing ImageJ Plugins—A Tutorial 23

Version 1.6

First of all, we import the necessary packages. We want to work on the current stack so
we need to implement PlugInFilter.

import ij.x*;
import ij.plugin.filter.PlugInFilter;
import ij.process.*;

public class StackAverage_ implements PlugInFilter {

We define the stack as instance variable because we will retrieve it in setup and use it in
run.

protected ImageStack stack;

In this method we get the stack from the current image and return the plugin’s capabilities—
in this case we indicate that it handles 8 bit grayscale images and requires a stack as input.

public int setup(String arg, ImagePlus imp) {
stack = imp.getStack();
return DOES_8G + STACK_REQUIRED;

}

In the run method we declare a byte array that will hold the pixels of the current slice.
Then we get width and height of the stack and calculate the length of the pixel array of each
slice as the product of width and height. sum is the array to hold the summed pixel values.

public void run(ImageProcessor ip) {
byte[]l pixels;
int dimension = stack.getWidth()*stack.getHeight();
int[] sum = new int[dimension];

In the outer loop we iterate through the slices of the stack and get the pixel array from each
slice. In the inner loop we go through the pixel array of the current slice and add the pixel
value to the corresponding pixel in the sum array.

for (int i=1;i<=stack.getSize();i++) {
pixels = (byte[]) stack.getPixels(i);
for (int j=0;j<dimension;j++) {
sum[j]+=0xff & pixels[j];
}
}

We have now gone through the whole stack. The image containing the averages will be a
8 bit grayscale image again, so we create a byte array for it. Then we iterate through the
pixels in the sum array and divide each of them through the number of slices to get pixel
values in the range 0...255.

byte[] average = new byte[dimension];
for (int j=0;j<dimension;j++) {

average[j]l = (byte) ((sum[jl/stack.getSize()) & Oxff);
}

Writing ImageJ Plugins—A Tutorial 24

Version 1.6

Finally we add a new slice to the stack. It is called “Average” and represented by the
pixel array that contains the average values.

stack.addSlice("Average",average) ;

4.11 Additional Reference

This reference is thought as a supplement to the concepts presented in this section. It is not
complete—it just covers what you will normally need for writing plugins. For a complete
reference see the API documentation and the source code.

4.11.1 ImagePlus

Windows

void setWindow(ImageWindow win)

Sets the window that displays the image.

ImageWindow getWindow()
Gets the window that is used to display the image.

void mouseMoved(int x, int y)

Displays the cursor coordinates and pixel value in the status bar.
Multithreading
boolean lock()

Locks the image so that it cannot be accessed by another thread.
boolean lockSilently()

Similar to lock, but doesn’t beep and display an error message if the attempt to lock
the image fails.

void unlock()

Unlocks the image.
Lookup Tables

LookUpTable createLut()
Creates a LookUpTable based on the image.

Statistics

ij.process.ImageStatistics getStatistics()
Returns an ImageStatistics object generated using the standard measurement
options (area, mean, mode, min and max).

ij.process.ImageStatistics getStatistics(int mOptions)
Returns an ImageStatistics object generated using the specified measurement
options.

ij.process.ImageStatistics getStatistics(intmOptions, int nBins)
Returns an ImageStatistics object generated using the specified measurement
options and number of histogram bins.

Writing ImageJ Plugins—A Tutorial 25

Version 1.6

Calibration

void setCalibration(ij.measure.Calibration cal)

Sets this image’s calibration.

void setGlobalCalibration(ij.measure.Calibration global)

Sets the system-wide calibration.

ij.measure.Calibration getCalibration()

Returns this image’s calibration.

4.11.2 ImageProcessor

Geometric Transforms

void flipHorizontal ()
Flips the image horizontally.

void flipVertical()
Flips the image vertically.

void rotate(double angle)

Rotates the image angle degrees clockwise.

void scale(double xScale, double yScale)
Scales the image by the specified factors.
ImageProcessor crop()

Crops the image to the bounding rectangle of the current ROI. Returns a new image
processor that represents the cropped image.

ImageProcessor resize(int dstWidth, int dstHeight)
Resizes the image to the specified destination size. Returns a new image processor
that represents the resized image.

ImageProcessor rotateLeft()
Rotates the image 90 degrees counter-clockwise. Returns a new image processor
that represents the rotated image.

ImageProcessor rotateRight()
Rotates the image 90 degrees clockwise. Returns a new image processor that repre-
sents the rotated image.

void setInterpolate(boolean interpolate)
Setting interpolate to true causes scale(), resize() and rotate () to do bilinear
interpolation, otherwise nearest-neighbor interpolation is used.

Filters

void convolve3x3(int[] kernel)

Convolves the image with the specified 3x3 convolution matrix.

void sharpen()

Sharpens the image using a 3x3 convolution kernel.

Writing ImageJ Plugins—A Tutorial 26

Version 1.6

void smooth()

Replaces each pixel with the 3x3 neighborhood mean.
void filter(int type)

A 3x3 filter operation, the argument defines the filter type.
void dilate()

Dilates the image using a 3x3 minimum filter.

void erode()
Erodes the image using a 3x3 maximum filter.
void findEdges()

Finds edges using a Sobel operator.
void medianFilter()

A 3x3 median filter.
void gamma(double value)

A gamma correction.

void invert()

Inverts an image.
void add(int value)
Adds the argument to each pixel value.
void multiply(double value)
Multiplies each pixel value with the argument.

void and(int value)

Binary AND of each pixel value with the argument.

void or(int wvalue)

Binary OR of each pixel value with the argument.
void xor(int value)
Binary exclusive OR of each pixel value with the argument.
void log()
Calculates pixel values on a logarithmic scale.
void noise(double range)
Adds random noise (random numbers within range) to the image.
Drawing

void setColor(java.awt.Color color)
Sets the foreground color. This will set the default fill/draw value to the pixel value
that represents this color.

void setValue(double value)
Sets the default fill/draw value.

Writing ImageJ Plugins—A Tutorial 27

Version 1.6

void setLineWidth(int width)

Sets the line width.
void moveTo(int x, int y)

Sets the current drawing location to (x,y).
void lineTo(int x2, int y2)

Draws a line from the current drawing location to (x2,y2).
void drawPixel(int x, int y)

Sets the pixel at (x,y) to the current drawing color.
void drawDot(int xcenter, int ycenter)

Draws a dot using the current line width and color.
void drawDot2(int x, int y)

Draws a 2x2 dot in the current color.

void £ill()

Fills the current rectangular ROI with the current drawing color.

void fill(int[] mask)
Fills pixels that are within the current ROI and part of the mask (i.e. pixels that
have value 0 (= black) in the mask array).

void drawString(java.lang.String s)
Draws the string s at the current location with the current color.
int getStringWidth(java.lang.String s)
Returns the width of the specified string in pixels.
Colors
int getBestIndex(java.awt.Color c)
Returns the LUT index that matches the specified color best.
java.awt.image.ColorModel getColorModel()
Returns this processor’s color model.
void invertLut()
Inverts the values in the lookup table.
Minimum, Maximum and Threshold
double getMin()
Returns the smallest displayed pixel value.
double getMax()
Returns the largest displayed pixel value.

void setMinAndMax(double min, double max)
Maps the pixels in this image from min...max to the value range of this type of
image.

Writing ImageJ Plugins—A Tutorial 28

Version 1.6

void resetMinAndMax ()
For short and float images, recalculates the minimum and maximum image val-
ues needed to correctly display the image (i.e. maps the color values to the 255
displayable grayscales.

void autoThreshold()

Calculates the auto threshold of an image and applies it.
double getMinThreshold()

Returns the minimum threshold.
double getMaxThreshold()

Returns the maximum threshold.

void setThreshold(double minThreshold, double maxThreshold, int lutUpdate)
Sets the minimum and maximum threshold levels, the third parameters specifies if
the lookup table will be recalculated.

Histograms
int[] getHistogram()

Returns the histogram of the image. This method will return a luminosity histogram
for RGB images and null for floating point images.

int getHistogramSize()
The size of the histogram is 256 for 8 bit and RGB images and maxmin+1 for 16
bit integer images.

Snapshots (Undo)

void snapshot()
Saves the current state of the processor as snapshot.

java.lang.0Object getPixelsCopy()
Returns a reference to this image’s snapshot (undo) array, i. e. the pixel array before
the last modification.

void reset()

Resets the processor to the state saved in the snapshot.

void reset(int[] mask)
Resets the processor to the state saved in the snapshot, excluding pixels that are

part of mask.

4.11.3 Stacks

Accessing Images

java.lang.0Object[] getImageArray()

Returns the stack as an array of ImagePlus objects.
Color

boolean isHSB()
Returns true, if this is a 3-slice HSB stack.

Writing ImageJ Plugins—A Tutorial 29

Version 1.6

boolean isRGB()
Returns true, if this is a 3-slice RGB stack.

java.awt.image.ColorModel getColorModel()
Returns the stack’s color model.

void setColorModel (java.awt.image.ColorModel cm)

Assigns a new color model to the stack.

5 ImagelJ’s Utility Methods and Image Conversion

The ImageJ API contains a class called IJ that contains some very useful static methods.
These utility methods are also used in plugins generated using “Plugins/Record”. They are
discussed in this section. Section 5.8 deals with conversion from one image type to another.

5.1 (Error) Messages
It is often necessary that a plugin displays a message—be it an error message or any other
information. In the first case you will use

static void error(java.lang.String msg)

which displays a message in a dialog box entitled “Error”, in the second case

static void showMessage(java.lang.String msg)
which displays a message in a dialog box entitled “Message”.
You can also specify the title of the message box using

static void showMessage(java.lang.String title, java.lang.String msg)
All these methods display messages that the user has to accept. If you want to let the user
choose whether to cancel the plugin or to let it continue, use
static boolean showMessageWithCancel(java.lang.String title,
java.lang.String msg)
This method returns false if the user clicks cancel and true otherwise.

There are also some predefined messages:
static void nolImage()
Displays a “no images are open” dialog box.
static void outOfMemory(java.lang.String name)
Displays an “out of memory” message in the ImageJ window.
static boolean versionLessThan(java.lang.String version)

Displays an error message and returns false if the ImageJ version is less than the
one specified.

5.2 ImageJ Window, Status Bar and Progress Bar

The ImageJ main window and its components are shown in Figure 1. Until version 1.25, the
results window (Figure 2) was part of the main window in form of a text panel.

Writing ImageJ Plugins—A Tutorial 30

Version 1.6

il

File Edit Image Process Analyze Plugine ‘Window Help
B oo~z A |aele] || || ||

Version 1.272 (212 commands)

Figure 1: The ImageJ main window and its components: Menu bar, tool bar and status bar.

RI=E

File Eciit

-

-

‘| [v]

Figure 2: The ImageJ results window displays messages, measurements, etc. It opens auto-
matically, when text is written to it.

5.2.1 Displaying Text

To display a line of text in the results window (Figure 2) use

static void write(java.lang.String s)
It is possible to use the results window’s text panel as a table (e.g. for displaying
statistics, measurements, etc.). In that case ImagelJ lets you set the headings of the

columns using
static void setColumnHeadings(java.lang.String headings)
Note that this method clears the entire text panel.
You will often want to displays numbers, which you can format for output using

static java.lang.String d2s(double n)
Converts a number to a formatted string using two digits to the right of the decimal

point.
static java.lang.String d2s(double n, int precision)

Converts a number to a rounded formatted string.

5.2.2 Status Bar

Text can also be displayed in the status bar at the bottom of the main window using the
method
static void showStatus(java.lang.String s)
It can be useful to display the time that was needed for an operation:
static void showTime(ImagePlus imp, long start, java.lang.String str)
will display the string argument you specify, followed by the time elapsed since the
specified start value and the rate of processed pixels per second.

Writing ImageJ Plugins—A Tutorial 31

Version 1.6

5.2.3 Progress Bar

The progress of the current operation can be visualized using ImagelJ’s progress bar.
static void showProgress(double progress)

updates the position of the progress bar to the specified value (in the range from 0.0
to 1.0).

5.3 User input

Often user input (e. g. a parameter) is required in a plugin. ImageJ offers two simple methods
for that purpose.

static double getNumber(java.lang.String prompt, double defaultNumber)
Allows the user to enter a number in a dialog box.
static java.lang.String getString(java.lang.String prompt,
java.lang.String defaultString)
Allows the user to enter a string in a dialog box.

A way to build more sophisticated dialogs is presented in Section 6.2, accessing mouse
and keyboard events is discussed in Section 6.7.

5.4 Calling Menu Commands

You can access all menu commands from a plugin. There are two different methods:

static void doCommand(java.lang.String command)
Starts executing a menu command in a separate thread and returns immediately.
Executing the command in a separate thread means that the program will not wait
until the command is executed, it will immediately proceed. This has the advantage
that the program is not blocked while the command is running.

static void run(java.lang.String command)
Runs a menu command in the current thread, the program is will continue after the
command has finished.

5.5 Calling Other Pluglns

Like menu commands you can also run other plugins.
static java.lang.0bject runPlugIn(java.lang.String className,
java.lang.String arg)
Runs the plugin specified by its class name and initializes it with the specified
argument.

5.6 MessageTest Plugln (Example)

We will now look at a plugin that uses some of the utility methods presented in this chapter.
This time, we do not need an image, so we implement the interface PlugIn. We also have to
import the package ij as we need the class IJ from there.

import ij.x*;
import ij.plugin.Plugln;

Writing ImageJ Plugins—A Tutorial 32

Version 1.6

public class Message_Test implements PlugIn {

All we have to implement is the run method. We do not need the argument, so we ignore
it. First of all we display a string in the status bar that informs the user that the plugin was
started. Then we set the progress bar to 0% and show an error message.

public void run(String arg) {
IJ.showStatus("Plugin Message Test started.");
1J.showProgress(0.0);
IJ.error("I need user input!");

We want the user to input a string and set the progress bar to 50% after that. Then we
write a message into the main window saying that we were going to start the sample plugin
RedAndBlue (this is one of the plugins that come with ImageJ and displays a new image with
a red/blue gradient) and run the plugin. Finally we set the progress bar to 100% and show
a custom message box.

String name = IJ.getString("Please enter your name: ","I.J. User");
IJ.showProgress(0.5);

IJ.write("Starting sample plugin RedAndBlue ... ");
IJ.runPlugIn("RedAndBlue_","");

IJ.showProgress(1.0);

IJ.showMessage("Finished.",name+", thank you for running this plugin");

5.7 More Utilities

Keyboard & Sound

static void beep()
Emits an audio beep.
static boolean altKeyDown()
Returns true if the Alt key is down.

static boolean spaceBarDown()

Returns true if the space bar is down.
Accessing GUI Elements

static ImageJ getInstance()
Returns a reference to the “ImageJ” frame.
static java.applet.Applet getApplet()
Returns the applet that created this ImageJ or null if running as an application.

static TextPanel getTextPanel()

Returns a reference to the text panel in ImagelJ’s results window.

Writing ImageJ Plugins—A Tutorial 33

Version 1.6

Misc
static boolean isMacintosh()

Returns true if the machine on which ImageJ is running is a Macintosh.

static void wait(int msecs)

Delays msecs milliseconds.

static java.lang.String freeMemory()

Returns the amount of free memory in kByte as string.

5.8 Image Type Conversion

The simplest way to convert an image from one type to another is to use the conversion
methods of the image’s ImageProcessor.
ImageProcessor convertToByte(boolean doScaling)
Converts the processor to a ByteProcessor (8 bit grayscale). If doScaling is set,
the pixel values are scaled to the range 0 — 255, otherwise the values are clipped.
ImageProcessor convertToFloat()
Converts the processor to a FloatProcessor (32 bit grayscale). If a calibration
table has been set, the calibration function is used.
ImageProcessor convertToRGB()

Converts the processor to a ColorProcessor (RGB image).

ImageProcessor convertToShort(boolean doScaling)
Converts the processor to a ShortProcessor (16 bit grayscale). If doScaling is set,
the pixel values are scaled to the range 0 — 65536, otherwise the values are clipped.
The class ImageConverter in ij.process provides a number of methods for image type
conversion, also methods for converting RGB and HSB to stacks and vice versa. They can be
accessed either directly or by using the plugin class ij.plugin.Converter as a convenient
interface.
An instance of the converter can be constructed using

Converter ()
and works on the current image.
The only method of this class is

public void convert(java.lang.String item)
where item is a string specifying the destination type. It can have one of the values
“8-bit”, “16-bit”, “32-bit”, “8-bit Color”, “RGB Color”, “RGB Stack” and “HSB

Stack”.
Similarly, an ImageConverter instance can be created using

ImageConverter (ImagePlus imp)
The methods for conversion are:

public void convertToGray8()

Converts the ImagePlus to 8 bit grayscale.
public void convertToGray16()

Converts the ImagePlus to 16 bit grayscale.

Writing ImageJ Plugins—A Tutorial 34

Version 1.6

public void convertToGray32()
Converts the ImagePlus to 32 bit grayscale.

public void convertToRGB()
Converts the ImagePlus to RGB.
public void convertToRGBStack()

Converts an RGB image to an RGB stack (i.e. a stack with 3 slices representing
red, green and blue channel).

public void convertToHSB()
Converts an RGB image to a HSB stack (i.e. a stack with 3 slices representing hue,
saturation and brightness channel).

public void convertRGBStackToRGB()
Converts a 2 or 3 slice 8-bit stack to RGB.

public void convertHSBToRGB()
Converts a 3-slice (hue, saturation, brightness) 8-bit stack to RGB.

public void convertRGBtoIndexedColor(int nColors)
Converts an RGB image to 8-bits indexed color. nColors must be greater than 1
and less than or equal to 256.

To scale to 0—255 when converting short or float images to byte images and to 0—65535
when converting float to short images set scaling true using

public static void setDoScaling(boolean scaleConversions)
public static boolean getDoScaling()
returns true if scaling is enabled.

ImageConverter does not convert stacks, you can use StackConverter for this purpose. An
instance of this class can be created using

StackConverter (ImagePlus img)
It has the following methods:

void convertToGray16()

Converts this Stack to 16-bit grayscale.

void convertToGray32()
Converts this Stack to 32-bit (float) grayscale.

void convertToGray8()

Converts this Stack to 8-bit grayscale.

void convertToRGB()
Converts the Stack to RGB.

6 Windows

By default, plugins work with ImagePlus objects displayed in ImageWindows. They can
output information to the ImageJ window but they cannot control a window. Sometimes

Writing ImageJ Plugins—A Tutorial 35

Version 1.6

this can be necessary, especially for getting user input.

6.1 PluglnFrame

A PlugInFrame is a subclass of an AWT frame that implements the PlugIn interface. Your

plugin will be implemented as a subclass of PlugInFrame.

There is one constructor for a PlugInFrame. It receives the title of the window as argument:
PlugInFrame(java.lang.String title)

As this class is a plugin, the method

void run(java.lang.String arg)
declared in the PlugIn interface is implemented and can be overwritten by your
plugin’s run method.
Of course all methods declared in java.awt.Frame and its superclasses can be overwritten.
For details consult the Java AWT API documentation.

6.2 GenericDialog

In Section 5.3 we saw a very simple way of getting user input. If you need more user input
than just one string or number, GenericDialog helps you build a modal AWT dialog, i.e.
the programs only proceeds after the user has answered the dialog. The GenericDialog can
be built on the fly and you don’t have to care about event handling.
There are two constructors:

GenericDialog(java.lang.String title)

Creates a new GenericDialog with the specified title.

GenericDialog(java.lang.String title, java.awt.Frame parent)
Creates a new GenericDialog using the specified title and parent frame (e.g. your
plugin class, which is derived from PlugInFrame). The ImageJ frame can be re-
trieved using I1J.getInstance().
The dialog can be displayed using

void showDialog()

6.2.1 Adding controls

GenericDialog offers several methods for adding standard controls to the dialog:
void addCheckbox(java.lang.String label, boolean defaultValue)
Adds a checkbox with the specified label and default value.

public void addCheckboxGroup(int rows, int columns, java.lang.String[]
labels, boolean[] defaultValues)
Adds a group of checkboxes using a grid layout with the specified number of rows
and columns. The arrays contain the labels and the default values of the checkboxes.
void addChoice(java.lang.String label, java.lang.String[] items,
java.lang.String defaultItem)
Adds a drop down list (popup menu) with the specified label, items and default
value.

Writing ImageJ Plugins—A Tutorial 36

Version 1.6

void addMessage(java.lang.String text)
Adds a message consisting of one or more lines of text.
void addNumericField(java.lang.String label, double defaultValue, int
digits)
Adds a numeric field with the specified label, default value and number of digits.
void addStringField(java.lang.String label, java.lang.String defaultText)
Adds a 8 column text field with the specified label and default value.

void addStringField(java.lang.String label, java.lang.String defaultText,
int columns)
Adds a text field with the specified label, default value and number of columns.

void addTextAreas(java.lang.String textl, java.lang.String text2, int
rows, int columns)
Adds one or two text areas (side by side) with the specified initial contents and
number of rows and columns. If text2 is null, the second text area will not be
displayed.

6.2.2 Getting Values From Controls

After the user has closed the dialog window, you can access the values of the controls with
the methods listed here. There is one method for each type of control. If the dialog contains
more than one control of the same type, each call of the method will return the value of the
next control of this type in the order in which they were added to the dialog.

boolean getNextBoolean()

Returns the state of the next checkbox.
java.lang.String getNextChoice()

Returns the selected item in the next drop down list (popup menu).
int getNextChoiceIndex()

Returns the index of the selected item in the next drop down list (popup menu).
double getNextNumber ()

Returns the contents of the next numeric field.
java.lang.String getNextString()

Returns the contents of the next text field.
java.lang.String getNextText ()

Returns the contents of the next text area.
The method

boolean wasCanceled()
returns true, if the user closed the dialog using the “Cancel” button, and false, if

the user clicked the “OK” button.
If the dialog contains numeric fields, use

boolean invalidNumber ()
to check if the values in the numeric fields are valid numbers. This method returns
true if at least one numeric field does not contain a valid number.

Writing ImageJ Plugins—A Tutorial 37

Version 1.6

GenericDialog extends java.awt.Dialog, so you can use any method of java.awt.Dialog
or one of its superclasses. For more information consult the Java AWT documentation.

6.3 FrameDemo Plugln (Example)

This demo shows the usage of GenericDialog and PlugInFrame. It displays a dialog that
lets the user specify the width and height of the PlugInFrame that will be displayed after
closing the dialog.

We import the ij and ij.process package, the ij.gui package, where GenericDialog
is located and the classes PlugInFrame and AWT label.

import ij.*;

import ij.gui.*;

import ij.plugin.frame.PlugInFrame;
import java.awt.Label;

Our plugin is a subclass of PlugInFrame which implements the PlugIn interface, so we don’t
have to implement an interface here.

public class FrameDemo_ extends PlugInFrame {

We overwrite the default constructor of the new class. If we wouldn’t do that, the superclass’
default constructor PlugInFrame () would be called, which does not exist. So we have to call
the superclass’ constructor and specify a title for the new frame.

public FrameDemo_() {
super ("FrameDemo") ;

}

In the run method we create a GenericDialog with the title “FrameDemo settings”. Then
we add two 3 digit numeric fields with a default value of 200.

public void run(String arg) {
GenericDialog gd = new GenericDialog("FrameDemo settings");
gd.addNumericField ("Frame width:",200.0,3);
gd.addNumericField("Frame height:",200.0,3);

We display the dialog. As it is modal, the program is stopped until the user closes the dialog.
If the user clicks “Cancel’” we display an error message and leave the run method.

gd.showDialog();

if (gd.wasCanceled()) {
IJ.error("Plugln canceled!");
return;

}

Here we get the values of the numeric fields with two calls of getNextNumber (). We set the
size of the FrameDemo window to these values and add a centered AW'T label with the text
“PluglnFrame demo”. Finally we show the frame.

this.setSize((int) gd.getNextNumber(), (int) gd.getNextNumber());
this.add(new Label("PlugInFrame demo",Label.CENTER));
this.show();

Writing ImageJ Plugins—A Tutorial 38

Version 1.6

6.4 ImageWindow

An ImageWindow is a frame (derived from java.awt.Frame) that displays an ImagePlus.
The frame contains an ImageCanvas on which the image is painted and a line of information
text on top. Each ImagePlus is associated with an ImageWindow, which is created when the
image’s show() method is called for the first time. ImageWindows can also be created using
one of the constructors:

ImageWindow(ImagePlus imp)

Creates a new ImageWindow that contains the specified image.

ImageWindow(ImagePlus imp, ImageCanvas ic)
Creates a new ImageWindow that contains the specified image which will be painted
on the specified canvas.
ImageJ maintains the list of open windows using the WindowManager class. When the con-
structor of ImageWindow is called, the window is added to the list of open windows.
boolean close()
Closes the window and removes it from the list. If the image has been changed, this
method will ask the user whether the image displayed in this window shall be saved.
If the user wants to save the image the method returns false. Otherwise it returns
true and the image is deleted.

boolean isClosed()
Returns true if close() has already been called, false otherwise.

The image displayed in an ImageWindow and the canvas on which the image is drawn can be
accessed using

ImagePlus getImagePlus()

ImageCanvas getCanvas ()
ImageWindow provides methods for the cut, copy and paste command:

void copy(boolean cut)
Copies the current ROI (which has to be rectangular) to the clipboard. If the
argument cut is true the ROI is cut and not copied.

void paste()
Pastes the content of the clipboard into the current image. The content of the
clipboard may not be larger than the current image and must be the same type.
Like an ImagePlus an ImageWindow has a method

void mouseMove(int x, int y)

This method displays the specified coordinates and the pixel value of the image in
this window in the status bar of the ImageJ window.

ImageWindow has also a useful public boolean variable called running, which is set to
false if the user clicks in the window, presses escape or closes the window. This can be used
in a plugin like shown in the following fragment to give the user a possibility to interrupt a
plugin.

win.running = true;
while (win.running) {
// do computation

}

Writing ImageJ Plugins—A Tutorial 39

Version 1.6

6.5 ImageCanvas

Each ImageWindow has an ImageCanvas on which the image is drawn. This is a subclass
of java.awt.Canvas and also implements a MouseListener and a MouseMotionListener
(for more information see the Java APl documentation, package java.awt.event). It can
therefore be useful for event handling, e. g. by subclassing it. Additionally it can be used to
get information on how the image is displayed and to modify this. Some useful methods of
ImageCanvas are listed here:

java.awt.Point getCursorLoc()

Returns the current cursor location.
double getMagnification()

Returns the current magnification factor of the image.
java.awt.Rectangle getSrcRect()

The surrounding rectangle of the image with current magnification.
int offScreenX(int x)

Converts a screen x-coordinate to an offscreen x-coordinate.
int offScreenY(int y)

Converts a screen y-coordinate to an offscreen y-coordinate.
int screenX(int x)

Converts an offscreen x-coordinate to a screen x-coordinate.
int screenY(int y)

Converts an offscreen y-coordinate to a screen y-coordinate.
void setCursor(int x, int y)

Sets the cursor based on the current tool and cursor location.

void setImageUpdated()
ImagePlus.updateAndDraw calls this method to get the paint method to update
the image from the ImageProcessor.

void setMagnification(double magnification)

Sets new magnification factor for image.

void zoomIn(int x, int y)

Zooms in by making the window bigger.

void zoomOut(int x, int y)

Zooms out by making srcRect bigger.

6.6 Subclasses of ImageWindow
6.6.1 StackWindow

A StackWindow is a frame for displaying ImageStacks. It is derived from ImageWindow and
has a horizontal scrollbar to navigate within the stack.

Writing ImageJ Plugins—A Tutorial 40

Version 1.6

void

void

showSlice(int index)
Displays the specified slice and updates the stack’s scrollbar.

updateSliceSelector ()
Updates the stack’s scrollbar.

6.6.2 Histogram Window

HistogramWindow is a subclass of ImageWindow designed to display histograms. There are
two constructors:

HistogramWindow(ImagePlus imp)

Displays a histogram (256 bins) of the specified image. The window has the title
“Histogram”.

HistogramWindow(java.lang.String title, ImagePlus imp, int bins)

void

Displays a histogram of the image, using the specified title and number of bins.

showHistogram(ImagePlus imp, int bins)
Displays the histogram of the image using the specified number of bins in the
HistogramWindow.

6.6.3 PlotWindow

This is a subclass of ImageWindow designed for displaying plots in a (z,y)-plane
PlotWindow(java.lang.String title, java.lang.String xLabel,

java.

void

void

void

void

lang.String yLabel, float[] xValues, float[] yValues)
Constructs a new plot window with specified title, labels for x- and y- axis and adds
points with specified (x,y)-coordinates.

addLabel (double x, double y, java.lang.String label)
Adds a new label with the specified text at position (x,y).

addPoints(float[] x, float[] y, int shape)

addPoints(double[] x, double[] y, int shape)

These two methods add points with specified (z,y) coordinates to the plot. The
number of points is given by the length of the array. The argument shape determines
the shape of a point. Currently only circles are supported, which is specified by
passing the constant PlotWindow.CIRCLE.

setLimits(double xMin, double xMax, double yMin, double yMax)

Sets the limits of the plotting plane.

6.7 Event Handling (Example)

ImageWindow and ImageCanvas are derived from the AWT classes Frame and Canvas and
therefore support event handling. This is especially useful to get user input via mouse and
keyboard events.

Event handling in Java AWT is based on interfaces called listeners. There is a listener
interface for each type of event. A class implementing a listener interface is able to react on
a certain type of event. The class can be added to a component’s list of listeners and will be
notified when an event that it can handle occurs.

Writing ImageJ Plugins—A Tutorial 41

Version 1.6

A plugin that has to react on a certain type of event can implement the appropriate
interface. It can access the window of the image it works on and the canvas on which the
image is painted. So it can be added as a listener to these components.

For example, we want to write a plugin that reacts to mouse clicks on the image it works
on. The listener interfaces are defined in java.awt.event, so we import this package.

import ij.*;

import ij.plugin.filter.PlugInFilter;
import ij.process.*; import ij.gui.*;
import java.awt.event.x*;

We have to access the image and the canvas in more than one method, so we declare them
as instance variables:

ImagePlus img;
ImageCanvas canvas;

The plugin has to implement the appropriate Interface:

public class Mouse_Listener implements PlugInFilter, MouseListener {

In the setup method we have access to the ImagePlus so we save it to the instance variable.
We also set the plugin’s capabilities.

public int setup(String arg, ImagePlus img) {
this.img = img;
return DOES_ALL+NO_CHANGES;

}

In the run method we get the ImageWindow that displays the image and the canvas on which
it is drawn. We want the plugin to be notified when the user clicks on the canvas so we add
the plugin to the canvas’ MouseListeners.

public void run(ImageProcessor ip) {
ImageWindow win = img.getWindow();
canvas = win.getCanvas();
canvas.addMouselListener (this) ;

}

To implement the interface we have to implement the five methods it declares. We only want
to react on clicks so we can leave the others empty. We get the coordinates of the point of the
mouse click from the event object that is passed to the method. The image could be scaled
in the window so we use the offScreenX() and offScreenY() method of ImageCanvas to
receive the true coordinates.

public void mouseClicked(MouseEvent e) {
int x = e.getX();
int y = e.getY();
int offscreenX = canvas.offScreenX(x);
int offscreenY = canvas.offScreenY(y);
IJ.write("mousePressed: "+offscreenX+","+offscreenY);

Writing ImageJ Plugins—A Tutorial 42

Version 1.6

public void mousePressed(MouseEvent e) {}
public void mouseReleased(MouseEvent e) {}
public void mouseEntered(MouseEvent e) {2}

public void mouseExited(MouseEvent e) {}

A more advanced mouse listener (which avoids assigning the listener to the same image twice)
and a similar example that reacts on keyboard events can be found at the ImageJ plugins
page (cf. Section 10).

Like mouse and key listeners a plugin can implement any event listener, e.g. a mouse
motion listener. For adding a mouse motion listener, the following changes of the mouse
listener plugin are necessary:

The class has to implement the event listener interface:

public class Mouse_Listener implements PlugInFilter, MouselListener,
MouseMotionListener {

In the setup method, we add the plugin as listener to the image canvas.
canvas.addMouseMotionListener (this);
Of course we have to implement the methods defined in the interface:

public void mouseDragged(MouseEvent e) {
IJ.write("mouse dragged: "+e.getX()+","+e.getY());
}

public void mouseMoved(MouseEvent e) {
IJ.write("mouse moved: "+e.getX()+","+e.getY());
}
/A

For details about listener interfaces, their methods and the events passed please see the Java
AWT documentation.

7 Advanced Topics

7.1 Data Import/Export
7.1.1 Movies

Because of its capability to handle image stacks ImageJ can be used to process movies. Import
and export from and to common movie formats is possible.

QuickTime import and export plugins are available on the ImageJ plugins page. They
are based on Apple’s QuickTime for Java library. To use these plugins, QuickTime for Java
has to be installed (which should be the case on Mac OS 9.04 or higher and Mac OS X). On
older Macs and under Windows QuickTime (available at http://www.apple.com/quicktime/

Writing ImageJ Plugins—A Tutorial 43

Version 1.6

download) has to be installed performing a custom installation and selecting QuickTime for
Java which will install the file QTJava.zip.

Under Windows QTJava.zip has to be included in the classpath (-cp option) of the Java
virtual machine used for running ImagelJ.

For AVI files, a writer plugin and a reader plugin for uncompressed AVIs are available.
It does not require any further libraries.

ImageJ can also handle image sequences, i. e. numbered files in the same directory having
any type that is supported by ImageJ. They can be loaded using the “File / Import / Image
Sequence” command. The File Opener plugin also allows to load a number of files listed in
a text file.

For all movie plugins it is recommended to increase the amount of available memory of
the JVM used for running ImagelJ (cf. Section 8).

7.2 Using the ImageJ Library outside ImageJ

The ImageJ classes form an image processing library which can be used in other Java appli-
cations and applets and also on the server side in servlets or Java Server Pages (JSP). The
following section outlines the use of the ImageJ library in such projects.

7.2.1 Why use the ImageJ library in your Java project?

Java 1.1.

Java 2 introduced many improvements concerning image processing with Java. But most
users still use browsers that only have a Java 1.1 virtual machine and only a minority uses
Sun’s Java plugin. Java 2 support may also be not available on less widespread platforms.
ImagelJ is based on Java 1.1 and is therefore a good choice especially for applets.

ImagePlus as internal image format.

You will probably need an internal image representation format for your application. It
is convenient to use ImagePlus and ImageProcessor for this purpose, as a lot of basic
functionality (reading/writing pixel values, scaling, etc.) is already available.

Plugins.

If you decide to use ImagePlus as your internal image format you can also use all plugins
from the ImageJ distribution as well as all other ImageJ plugins.

File /0.

You can use the ImagelJ file input/output plugins for reading and writing files in a variety of
formats.

Of course there are some other useful Java based imaging toolkits and libraries besides
ImageJ. The ImageJ links page at http://rsb.info.nih.gov/ij/links.html lists some of them.

7.2.2 Applications and Applets

To use the ImageJ library in your Java application, just import the necessary ImageJ packages
(e.g. ij.process) in your classes. To compile and run your application you have to add
ij.jar (if it’s not in the application directory you also have to specify the path) to the
classpath. In an application, you could also use dynamic class loading as it is implemented
in ImageJ for accessing user plugins.

Writing ImageJ Plugins—A Tutorial 44

Version 1.6

Using the ImageJ library in an applet is quite similar: include the import statement in
your classes and add ij.jar to the classpath for compiling the applet. The Java security
model requires all libraries used by an unsigned applet to be located on the same host and
you have to include ij.jar in the archive list of the applet.

Assume your applet’s code is located in myapplet . jar, the applet class is MyApplet.class,
it uses the ImageJ library and both JAR files are located in the same directory as the HIT'ML
file that embeds the applet. The applet tag in the HTML page would look like

<APPLET CODE="MyApplet.class" ARCHIVE="myapplet.jar, ij.jar"
WIDTH=400 HEIGHT=400>
</APPLET>

7.2.3 Servlets and JSP

Web applications often require modifying or generating images on the fly, e. g. stock charts.
In Java based server side solutions the ImageJ library can be used for image processing very
easily. If you are using servlets, just add the appropriate import statement for an Imagel
package to your servlet and include ij.jar in the classpath. In JSP applications, ImageJ
can either be used “behind the curtain” inside Java Beans (where you just import it as in
any other kind of Java class) or directly in a JSP page using e. g.

<\%\@ page import="ij.process.*" \%>

As display format you often have only the choice between JPEG, GIF or PNG in web
applications. The output will not be written to a file but to the response stream of the
servlet /JSP. You could use ImageJ’s file encoders (an example can be found at http://rsb.
info.nih.gov/ij/applets.html) for this purpose or use e.g. Sun’s JPEG encoder. The following
servlet sample code illustrates how to load a file (in any format that can be read by ImageJ)
and send it as a JPEG stream to the user’s browser. The name of the image will be specified
as parameter image of a GET request. A call of the servlet could look like

http://www.myserver.com/servlet/ShowImage?image=/images/picture.tif

We assume in this example that the image loaded is a RGB color image. Here is the
complete code (requires Java 2):

First we import the servlet packages, the AWT image subpackage, the required ImageJ
packages and the Sun JPEG encoder:

import javax.servlet.x*;

import javax.servlet.http.x*;
import java.io.x;

import java.awt.image.*;

import ij.*;

import ij.io.x*;

import ij.process.x*;

import com.sun.image.codec. jpeg.*;

public class ShowImage extends HttpServlet

Writing ImageJ Plugins—A Tutorial 45

Version 1.6

We implement the method for handling a GET request, which gets the HT'TP request
and response as parameters. First we read the parameter containing the image URL from the
request and open the ImageJ using ImageJ’s Opener. As we assumed to open a color image,
we can now get its ColorProcessor, create a new BufferedImage and store the image’s pixel
array in it.

public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, I0Exception {

String inputURL=request.getParameter("image");
Opener opener = new Opener();
ImagePlus image = opener.openURL(inputURL);

ColorProcessor cp = (ColorProcessor) image.getProcessor();
int[] pixels = (int[]) cp.getPixels();
BufferedImage bimg = new BufferedImage(cp.getWidth(),
cp.getHeight (), BufferedImage.TYPE_INT_RGB);
bimg.setRGB(0,0,cp.getWidth(),cp.getHeight),
pixels,0,cp.getWidth());

As we want to return a JPEG image, we set the appropriate MIME type for the HTTP
response. We get the response’s binary output stream and open a JPEG encoder on it. To get
best quality, we disable subsampling and set the JPEG quality parameters to the maximum.
Finally we encode the image with the specified parameters and clean up by flushing and
closing the output stream.

response.setContentType ("image/jpeg") ;

OutputStream outstr = response.getOutputStream() ;
JPEGImageEncoder jie = JPEGCodec.createJPEGEncoder (outstr);

JPEGEncodeParam jep = jie.getDefaultJPEGEncodeParam(bimg) ;
jep.setQuality(1.0f,false);
jep.setHorizontalSubsampling(0,1);
jep.setHorizontalSubsampling(1,1);
jep.setHorizontalSubsampling(2,1);
jep.setVerticalSubsampling(0,1);
jep.setVerticalSubsampling(1,1);
jep.setVerticalSubsampling(2,1);
jie.encode(bimg, jep);
outstr.flush();

outstr.close();

A big advantage of JSP is the separation of implementation (which can be wrapped into
Java Beans) and the page layout. A sample that shows how a JSP based image processing

Writing ImageJ Plugins—A Tutorial 46

Version 1.6

system could look like, can be found at the original location of this tutorial (see title page). It
consists of a Java Bean that wraps the whole ImageJ functionality and also supports dynamic
loading of user plugins (although plugins must not require user input except for the argument
string).

8 Troubleshooting

8.1 ImageJ runs out of memory.

This can be solved by making more memory available to the Java Runtime Environment.
As virtual memory is significantly slower than real RAM, you should try to assign not more
than 2/3 of your real RAM to the Java virtual machine 3.

Windows

To increase the amount of memory available to ImageJ, edit the -mx option in the “Target:”
field of the of the “Shortcut” properties of the ImageJ shortcut. The default is 8OMB. For
example, to increase the available memory from 80MB to 340MB, change the “Target” line
to

C:\ImageJ\jre\bin\jrew.exe -mx340m -classpath ij.jar;toolsll.jar ij.ImagelJ

MacOS

Java applications allocate memory from the System heap so there is usually no need to
increase the value of “Preferred Size” in ImagelJ’s “Get Info” dialog. Strangely enough,
allocating more memory to ImageJ reduces the amount of memory available for loading
images! It may, however, be necessary to allocate more memory to ImageJ to avoid error
messages with plugins that use QuickTime for Java. The Finder’s “About this Computer”
window is a good way to monitor ImageJ’s memory usage.

Mac OS X

To make more memory available to ImagelJ, edit the line
com.apple.mrj.application.vm.options=-Xmx128M

in the ImageJ.app/Contents/Resources/MRJApp.properties file, where ImageJ.app is
the directory (bundle) that the Finder displays as the ImageJ application. You can view
the files and folders in the ImageJ bundle by control-clicking on the ImageJ application and
selecting ”Show Package Contents”. Another way to make more memory available to ImageJ
is by running from the command line and using the -mx option.

Linuzx, Uniz, other OS
You can set the amount of memory available for the Java runtime environment by using the

mx switch followed by the amount of memory. For example, to make 256MB available for the
JVM, call it using:

./jre/bin/jre -mx266m -cp ij.jar:tools.jar ij.ImagelJ
If you want to use this setting all the time, make the modification in the run script.

3The operating system specific descriptions listed here are taken from http://rsb.info.nih.gov/ij/install.

Writing ImageJ Plugins—A Tutorial 47

Version 1.6

8.2 A plugin is not displayed in ImageJ’s plugins menu.
This may have several reasons:
e The plugins name does not contain an underscore.
e The plugin may not be in the plugin directory or one of its subdirectories.

e If you did not compile the plugin inside ImageJ, make sure that the compilation was
successful and a class file has been created.

8.3 When you call the “Plugins/Compile and Run ...” menu, you get the
message: “This JVM appears not to include the javac compiler. [...]”

If you are using Mac OS, you need the MRJ SDK in addition to the MRJ (Macintosh Runtime
for Java). Consult Section 1.3.2 for further reference.

If you experience this problem when using the Windows or Linux distribution including a
Java compiler, make sure

e that the tools library (tools11.jar if you are using JRE/JDK 1.1, tools. jar if you
are using Java 2 (JRE/JDK 1.2 or higher)) is in the classpath, and

e that you are using the right Java environment if you have more than one installed.
Specify the path to the Java Virtual Machine you want to use explicitly.

8.4 ImageJ throws an exception when you use it in a web application
running on a Unix/Linux server.

Many ImagelJ classes are based on Java AW'T. But the initialization of AWT will fail—usually
during initializing the default ttolkit, which is required for loading images via AWT—on
“headless” servers, i.e. servers with no Xserver installed. With JDK 1.4 or later, you can use
the headless option

java -cp ij.jar;. -Djava.awt.headless=true ij.ImagelJ

9 Frequently Asked Questions

9.1 How to change the URL for the sample images (menu “File/Open
Samples”) in order to access local copies of the files?

The URL is set using the images.location value in the file IJ_Props.txt which is located
in ij.jar. The URL must include a trailing /.

You can edit ij.jar with a program that reads ZIP files. Some of them (e.g. WinZip)
support editing a file from the archive directly and will update the archive after closing the
modified file. Otherwise it is necessary to extract IJ_Props.txt from the archive and add it
again after editing.

Example:

images.location=http://www.mymirror.com/ij/images/

Writing ImageJ Plugins—A Tutorial 48

Version 1.6

9.2 How to include user plugins when running ImageJ as applet?

When running ImageJ as an unsigned applet, the class loader that loads user plugins will not
work as the plugins folder is not in the code base. Add a package statement such as package
ij.plugins to the plugin code and insert the compiled class into ij.jar (be sure to include
it into the right folder). To make the plugin appear in the plugins menu add a line like

plug-in08="Plugin",ij.plugin.Plugin_

to the plugins section in IJ_Props.txt, which is also located in ij. jar.

You can edit ij.jar with a program that reads ZIP files. Some of them (e.g. WinZip)
support editing a file from the archive directly and will update the archive after closing the
modified file. Otherwise it is necessary to extract IJ_Props.txt from the archive and add it
again after editing.

10 Further Resources

10.1 API Documentation, Source Code

The ImageJ API documentation is available online at
http://rsb.info.nih.gov/ij/docs/api/index.html.

API documentation and source code are available for download at
http://rsb.info.nih.gov/ij/download.html.

10.2 Plugins Page

Many ImageJ plugins (with source code) are available at
http://rsb.info.nih.gov/ij/plugins/index.html.

10.3 ImageJ Mailing List

For questions concerning ImageJ that are not answered by the documentation consult the
ImageJ mailing list.

A complete archive can be found at http://list.nih.gov/archives/imagej.html.

For information about subscribing see http://rsb.info.nih.gov/ij/list.html.

10.4 Java Resources

10.4.1 Online Resources

Java API documentation and many tutorials are available from Sun Microsystems at http:
//java.sun.com/ under “Docs & Training”. Other online Java resources are:

e A comprehensive collection of Java resources (books, tutorials, FAQs, tools): http:
//www.apl.jhu.edu/~hall/java.

e Exploring Java: http://www.ooi.com/exploringjava/
e Java Programmer’s FAQ: http://www.afu.com/

e O’Reilly Java Center: http://java.oreilly.com/

Writing ImageJ Plugins—A Tutorial 49

Version 1.6

JavaWorld: http://www.javaworld.com/

DocJava: http://www.DocJava.com/

Java Developers Journal: http://www.sys-con.com/java/

JARS: http://www.jars.com/jars_resources_java.html

10.4.2 Books

Java in a Nutshell: A Desktop Quick Reference (Java Series)
by David Flanagan
648 pages, 3" edition (November 1999)
O’Reilly & Associates
ISBN: 1565924878

Java Examples in a Nutshell
by David Flanagan
500 pages, 2" edition (September 2000)
O’Reilly & Associates
ISBN: 0596000391
The first third of this book is interesting for someone who wants to get into Java
programming, the other chapters cover more advanced topics.

The Sun Java Series
Detailed information can be found at http://java.sun.com/docs/books/ .

Writing ImageJ Plugins—A Tutorial 50

