
INSIDE NIH IMAGE
(NIH Image 1.60)

GENERAL INFORMATION. 2

ABOUT THIS DOCUMENT.. 2

MACRO EXAMPLES, TECHNIQUES & OPERATIONS . 2

WHAT IS A MACRO AND WHY WRITE ONE? .. 2
BEFORE YOU BEGIN... 3
FOR THE PROGRAMMING BEGINNER.. 3
MACRO GLOBAL VS. LOCAL VARS... 4
PUTMESSAGE, SHOWMESSAGE & WRITE... 4

PutMessage... 4
ShowMessage.. 5
Write.. 5

NUMBER OF DIGITS... 6
SWITCHING AND CHOOSING WINDOWS... 6
HOW TO INPUT A NUMBER OR STRING.. 7
LOOPING... 8
REGIONS OF INTEREST (ROI) .. 10
DETECTING PRESS OF OPTION, SHIFT AND CONTROL KEYS .. 11
MEASUREMENT AND RUSER ARRAYS.. 12

rCount, SetCounter, ResetCounter.. 13
PLACING MACRO DATA IN THE "RESULTS" WINDOW .. 14
OPERATING ON EACH IMAGE IN A STACK (SELECTSLICE) .. 15
ACCESSING BYTES OF AN IMAGE... 16
BATCH PROCESSING ... 17
AVOIDING A MACRO DIALOG BOX ... 17
TICKCOUNT... 18
PLACING TIME AND DATE INTO YOUR DATA .. 18
PLOTDATA NOTES... 19
CALLING USER WRITTEN PASCAL FROM A MACRO... 20

PASCAL EXAMPLES, TECHNIQUES & OPERATIONS . 2 2

USERS CAN USE USER.P... 22
RECOMMENDED ADDITION WHEN ADDING TO PASCAL.. 22
RETURNING A VALUE FROM PASCAL TO A MACRO ... 22
PASCAL VERSIONS OF SELECTSLICE & SELECTPIC.. 23
PUTMESSAGE, SHOWMESSAGE & PUTMESSAGEWITHCANCEL .. 23
HOW TO INPUT A NUMBER.. 24
READING FROM DISK .. 25
MEMORY AND POINTER ALLOCATION .. 26
OPERATING ON AN IMAGE.. 27
GETTING AT THE BYTES OF AN IMAGE .. 27
WORKING WITH TWO IMAGES... 31
4D DATASET.. 32
CREATING A DIALOG BOX .. 33
KEY & MOUSE ... 34
IMAGE AND TEXT.. 35

GENERAL INFORMATION

About this Document

This document is intended for beginners, who never formally studied computer science
towards a degree, but need to use software and get the most out of it. For those who would
like to correct errors in this guide please contact Mark Vivino in the NIH Division of
Computer Research and Technology. My email is mvivino@helix.nih.gov. If you are like
me, spending your whole day writing a graphical user interface is not your way of make a
contribution to the world. You might have an image processing application that needs doing
and don't want to figure out all the aspects of the Mac Toolbox (or Windows or Motif). You
can build your image processing application into the NIH Image program and save yourself
from a lot of wasted effort. Hopefully, this manual may help you on your route whether
simple (macro) or complex (pascal). Having freely available and modifiable source code is
not seen often with most commercial packages. This guide updated 4/10/96, current to Image
version 1.60

Macro Examples, Techniques & Operations

What is a macro and why write one?

A macro is text containing a sequence of calls or routines which NIH Image interprets
and executes. To write a macro, you can choose "New" then "text window" to create a text
window within NIH Image. You load the macro using "Load Macro". A rich set of example
macro routines is distributed with the NIH Image program. You can try some of these out
and borrow code from them in order to write your own macro.

Simple macros, such as the one below, are useful utilities to save time and effort. This
macro is an example of a macro which follows the same operations that could be manually
performed by you from the NIH Image menus. It clears anything outside of the Region of
Interest (ROI) which you draw. Macros can, of course, be much larger and can include
looping, calculations and basically an entire imaging application.

MACRO 'Clear Outside [C]';
 {Erase region outside ROI.}
BEGIN
 Copy;
 SelectAll;
 Clear;
 RestoreRoi;
 Paste;
 KillRoi;
END;

As a general guidline, if you have a highly iterative operation, prolonged calculation,
derivation, modification or anything else complex you should consider using a pascal routine
for that portion of your coding. The ease of the macro interface with your code executing at
compiled pascal execution rates can be done with calls to UserCode in your macro.

Before you begin

It should not be hard for you to start writing a macro. You will want to do several
things before you begin. First, go to the "NIH Image 1.xx Manual" file and print the section
“Macro Programming Language “. This provides you with a complete list of all macro calls.
The list is organized by the NIH Image menus, or the call is categorized as a miscellaneous
call or as a miscellaneous function. After you print this section, be sure you understand the
organization of the manual by looking at the NIH Image menus and examining the list of calls
in the printout. Finally, locate the macros folder distributed with NIH Image. Open, load and
examine some of the macros. Try using "Find" from the "Edit" menu on one of the open
macros. "Find" is fairly useful in helping you debug a macro. It allows you to go to sources
of error when you get error messages during the load or execution of a macro.

For the programming beginner

You probably don't need to study programming to write a macro. Depending on the
complexity of your application, you might be able to pick up everything you need by
examining some of the macros in the macros folder. To some, a confusing aspect of writing
macros is understanding what a function is and how it is used. A function returns a value or a
boolean (true/false). In the example below, nPics is a function which will return an integer
number of pictures open. KeyDown('option') returns a true or false depending on whether
you hold the option key down.

Macro 'Function demo';
begin
 {Here is an example use of the nPics function returning a value}
 showmessage('Number of images open: ',nPics);
 {Here is an example use of keydown function returning a boolean}
 If KeyDown('option') then putmessage('Number of images open: ',nPics);
end;

One text I recomend skimming through is Pascal Programming and Problem Solving ,
by Leestma and Nyhoff, other texts are listed in the "Macro Programming Section" of the
NIH Image manual.

Macro global vs. local vars

Most programming languages like pascal, C, etc, have a local or global variable. A
global variable is declared at the top of the macro file and can be utilized by any procedure or
macro in the file. A local variable is declared in the procedure or macro in which it is used.
For the example macro set below, "A" and "B" are local to the 'Add numbers' macro.
"Answer" is globally declared and used by both macros.

VAR
 Answer:real; {global}

Macro 'Add numbers';
Var
 A,B: real; {local}
begin
 A := Getnumber('Enter the first number',2.0);
 B := Getnumber('Enter the second number',3.14);
 Answer := A+B;
end;

Macro 'Show Answer';
begin
 ShowMessage(' The added result is: ', Answer:4:2);
end;

Putmessage, ShowMessage & Write

PutMessage

PutMessage is perhaps one of the easiest ways to provide feedback to users. To use
putmessage you simply call the routine with the message or string you wish to give to the
user.

PutMessage('This macro requires a line selection');

You can pass multiple arguments with PutMessage if you need to.

PutMessage('There are ', nPics, ' open');

ShowMessage

ShowMessage allows display of calculations, data, variables or whatever you cast as a
string into the Info window.

Here is a simple example of output to the Info window:

ShowMessage('x1 = ',x1);

You can use the backslash ('\') character to do a carriage return for macros:

ShowMessage('Average Size=',AverageSize,'\TotalCount=',TotalCount);

Write

You can also write data or info onto the image window with a macro call to Write or Writeln.

 Diameter := Width / PixelsPerMM; {in MM.}
 MoveTo(300,10);
 Write('Diameter = ', Diameter:5:2,' mm.');

Number of digits

There are several ways to set the number of digits you use for output with
Showmessage, Write, Writeln, putmessage or displaying rUser arrays. One way is to use the
SetPrecison macro call.

Macro 'Digits example one';
Var
 A,B, Answer: real;
begin
 SetPrecision(4);
 A := 3.1415962;
 B := 10.0;
 Answer := A*B;
 ShowMessage('The result is: ', Answer);
e n d ;

The answer shown in the Info window will have 4 digits after the decimal.

The other method is to use the form e:f1:f2 where f1 is the field width, and f2 specifies
the number of digits to the right of the decimal point.

Macro 'Digits example two';
Var
 A,B, Answer: real;
begin
 A := 3.1415962;
 B := 10.0;
 Answer := A*B;
 ShowMessage('The result is: ', Answer:4:2);
e n d ;

The answer shown in the Info window will have 2 digits after the decimal.

Switching and choosing windows

There are a number of ways to switch between windows in a macro. One of the best
ways is to use the PidNumber function to identify a unique ID for that window you will be
switching to at a later time during your macro execution. Pidnumber is a function which
returns a value. For example you might have:

v a r
 MyPicID:integer;
begin
 MyPicID := PidNumber;
 Duplicate('Duplicate image');
{some process}
 SelectPic(MyPicID); {To go back to the original}

Here the returned value from the PidNumber function was assigned to a variable called
MyPicID. The variable MyPicID was then used later on in the macro to select the picture.

As an alternative to SelectPic, you could have used ChoosePic(MyPicID). This would
have selected the picture but would not have made it the active front window. This is useful
when you flip between many windows, but do not need to activate the window.

As a second alternative, you could can use SelectWindow('Window name') to select
the window by its title. But if the named window is closed or non-existent, your macro will
end with the ensuing error.

How to input a number or string

Making a call to getnumber will allow you to enter a number into your macro. The
GetNumber macro will return a real number, or, if assigned to an integer variable it will not
pass the decimal digits should they exist

GetNumber('Prompt', default, d)
Displays a dialog box and returns with the value entered. Prompt is the
prompting string. Default is the default value. d (optional) is the number of
digits to the right of the decimal point (default is 2). Set d to zero to display an
integer default value.

This example displays, then reads in an integer

macro 'Number input example';
v a r
 MyNumber:integer;
begin
 MyNumber:=GetNumber('Enter number of iterations:',5,0);
 {some process}
end;

The idea is the same for entering a string

macro 'String input';
v a r
 MyString:string;
begin
 MyString:=GetString('What name?','Data');
end;

Looping

The NIH Image macro language has the standard set of pascal loops. This includes
"for" loops and "while" loops, etc.

For loop:

Macro 'For loop example';
Var
 i:integer;
begin
 for i := 1 to 10 do begin
 ShowMessage('This iteration is: ', i);
 wait(0.5); {just a delay to see the answer in the Info window}
 {some process}
 end;
e n d ;

While loop:

Macro 'While loop example';
Var
 i,MyNumber:integer;
begin
 i:=1; {start the loop at 1}
 MyNumber:=GetNumber('Enter end of the loop:',10,0);
 while i<=MyNumber do begin
 {some process}
 ShowMessage('This iteration is: ', i);
 wait(0.5); {just a delay to see the answer in the Info window}
 i:=i+1;
 end;
end;

Loop with step:

The NIH Image macro language is (almost) a subset of Pascal. The macro FOR
statement does not have a BY option. Instead, use a WHILE loop with appropriate
increment.

Macro 'Loop with step';
Var
 i,MyNumber, step:integer;
begin
 i:=0; {start the loop at 0}
 MyNumber:=GetNumber('Enter ending value:',100,0);
 Step:=GetNumber('Enter step:',10,0);
 while i<=MyNumber do begin
 {some process}
 ShowMessage('i value: ', i);
 wait(0.5); {just a delay to see the answer in the Info window}
 i:=i+step;
 end;
end;

Repeat Loop:

Macro 'Repeat loop';
Var
 i:integer;
begin
 i := 0;
 Repeat
 {some process}
 ShowMessage('This iteration is: ', i);
 wait(0.5); {just a delay to see the answer in the Info window}
 i := i +1;
 until Button;
e n d ;

Regions of Interest (ROI)

Before you start looking at macro ROI's an introduction to coordinates is worthwhile.
See the picture below for a general guideline. Regions of interest are characterized by
'marching ants' which surround a selection. Coordinates of an image are x,y with 0,0 in the
top left of the image. “top” will be the distance from the top in y. “left” will be the distance in
x from the left edge. “height” is in y, and “width” in x.

This macro will list your ROI’s coordinates.

Macro 'Coordinates';
Var
 left, top,width,height:integer;
begin
 GetRoi(left,top,width,height);
 If width = 0 then begin
 putmessage('no ROI exists');
 exit;
 end;
 ShowMessage('ROI is ',left,' x units from the left','\',
 width, ' x units in width','\',
 top, ' y units below the top edge','\',
 height, ' y units in height');
e n d ;

Getting ROI information
GetRoi(left,top,width,height)

You will want to call this macro routine if you need any information about the current ROI.
The routine returns a width of zero if no ROI exists.

ROI creation
SelectAll

The Selectall macro command is equivalent to the Pascal SelectAll(true), which selects all of
the image and shows the ROI's 'marching ants'. See the above paragraph for pascal code
relating to Selectall.

MakeRoi(left,top,width,height)

This is as straight forward as the name implies.

MakeOvalRoi(left,top,width,height)

Not terribly differing to implement from MakeROI. If you want a circular ROI set width and
height to the same value.

Altering an existing ROI
MoveRoi(dx,dy)

Use to move right dx and down dy.

InsetRoi(delta)
Expands the ROI if delta is negative, Shrinks the ROI if delta is positive.

Other routines involving ROI's
RestoreROI,KillRoi

These are opposities.

Copy,Paste,Clear,Fill,Invert,DrawBoundary

Detecting press of option, shift and control keys

The macro "KeyDown(key)" (Key = 'option', 'shift', or 'control') returns a boolean
true or false. It returns TRUE if the specified key is down. The example macro below can be
run on any stack, using shift to delay more or control to delay less.

macro 'Animate Stack';
v a r
 i,delay:integer;
begin
 RequiresVersion(1.56);
 i:=0;
 delay:=0.1;
 repeat
 i:=i+1;
 if i>nSlices then i:=1;
 Wait(delay);
 SelectSlice(i);
 if KeyDown(' sh i f t ') then delay:=1.5*delay;
 if delay>1 then delay:=1;
 if KeyDown('contro l ') then delay:=0.66*delay;
 if K e y D o w n (' o p t i o n ') then beep;
 ShowMessage('delay=',delay:4:2);
 until button;
end;

Measurement and rUser Arrays

Currently you can not declare your own arrays but you can store macro data and results
in what is called the rUser arrays.There are actually many arrays available to the macros, but
of only several types:

1) Measurement, but user configuarable, rUser arrays.
2) NIH Image measurement results arrays
3) Built in NIH Image arrays
4) LineBuffer array (image data array)

Here are the specific examples of these

1) rUser1, rUser2
2) rArea, rMean, rStdDev, rX, rY, rMin, rMax, rLength, rMajor, rMinor, and rAngle.
3) Histogram, RedLUT, GreenLUT, BlueLUT, xCoordinates, yCoordinates, Scion,
PlotData
4) LineBuffer

You may write to the rUser arrays simply as:

 rUser1[1]:=SomeNumber;
 rUser2[1]:=SomeOtherNumber;

And similarly retrieve as:

 SomeNumber := rUser1[1];
 SomeOtherNumber := rUser2[1];

If you have more than two sets of data which you'd like to keep, and because there are
only two rUser arrays, then you can access other macro arrays. However you will need to be
careful because these arrays are affected by the Measurement command and the index of the
counter (rCount). You could easily write over your data without knowing. An example use
of measurement arrays outside the intended use is a snipet of code from the Export look up
table macro:

for i:=0 to 255 do begin
 rArea[i+1]:=RedLut[i];
 rMean[i+1]:=GreenLut[i];
 rLength[i+1]:=BlueLut[i];
 end;

Here rArea, rMean and rLength are used for Red, Green and Blue instead of area, mean and
length.

rCount, SetCounter, ResetCounter

The index of the measurement counter is stored in rCount. The index could also be described
as the last value seen in the index column of the results window (Show Results). Run this
macro to see measurements and the counter (rCount) value.

Macro 'rCount explaned';
Var
 i:integer;
begin
 ResetCounter;
 SetOptions('Mean');
 MakeRoi(0,0,5,5);
 for i := 1 to 10 do begin
 Measure;
 MoveRoi(5,0);
 end;
 ShowResults;
 ShowMessage('The final index in the results window is the value of rCount','\\',
 'rCount value is: ', rCount);
e n d ;

Issuing the ResetCounter command will allow overwriting of all previous measurement data.
You can also use the SetCounter command when you want to display a set of your own data
which is not dependant upon issuing the measure command. An example would be:

Macro 'SetCounter example';
Var
 left,top,width,height:integer;
begin
 ResetCounter;
 SetOptions('rUser1');
 SetPrecision(3);
 SelectAll;
 GetROI(left,top,width, height);
 rUser1[1] := width;
 rUser1[2] := height;
 rUser1[3] := height/width;
 SetCounter(3);
 ShowResults;
end;

Placing macro data in the "Results" window

If you have particular information, data, calculated results, or any type of numeric data
which you want to keep, you can redirect it into the Results window. Use the SetUser label
commands to title your field name. The rCount function keeps the current index of the
measurement counter. Since rUser1 and rUser2 are arrays, you specify the index of the array
with the rCount value. See below.

macro 'Count Black and White Pixels [B]';
{
Counts the number of black and white pixels in the current
selection and stores the counts in the User1 and User2 columns.
}
begin
 SetUser1Label('Black');
 SetUser2Label('White');
 Measure;
 rUser1[rCount]:=histogram[255];
 rUser2[rCount]:=histogram[0];
 ShowResults;
end;

Saving results data to a tab delimeted file

You can also save data from the macro, to a tab delimeted text file by adding several
commands in your macro:

 SetExport('Measurements');
 Export('YourFileName');

Operating on each image in a stack (SelectSlice)

By using a loop (for i:= 1 to nSlices) you can operate on a series of 2D images. The
nSlices function returns the number of slices in the stack.

macro 'Reduce Noise';
v a r
 i:integer;
begin
 if nSlices=0 then begin
 PutMessage('This window is not a stack');
 exit;
 end;
 for i:= 1 to nSlices do begin
 SelectSlice(i);
 ReduceNoise; {Call any routine you want, including UserCode}
 end;
end;

See the series of stack macros distributed with the Image program for more examples.

Accessing bytes of an image

The macro commands GetRow, GetColumn, PutRow and PutColumn can be used for
accessing the image on a line by line basis. These macro routines use what is know as the
LineBuffer array. This array is of the internally defined type known as LineType. Pascal
routines such as GetLine use the LineType. If you plan on accessing 'lines' of the image
within your macro, it would might be worth your while to examine the pascal examples in the
pascal section. After looking at these, you probably will see how to use the LineBuffer array
in a macro.

First look at the definition of LineType. LineType is globally declared as:
 LineType = packed array[0..MaxLine] of UnsignedByte;

Naturally, UnsignedByte has been type defined as:

UnsignedByte = 0..255;

The example below is a macro which uses the linebuffer array. If you are interested in
using a macro to get at image data, this example should be fairly clear.

Macro 'Invert lines of image'
v a r
 i,j,width,height:integer;
begin
 GetPicSize(width,height);
 for i:=1 to height do begin
 GetRow(0,i,width);
 for j:=1 to width do begin
 LineBuffer[j] := 255-LineBuffer[j];
 end;
 PutRow(0,i,width);
 end;

Batch Processing

It's easy to write a macro to process a series of images in a folder as long as the file
names contain a numerical sequence such as 'file01.pic', 'file02.pic', 'file03.pic', or image
001, image 002, ...

macro 'Batch Processing Example';
{
Reads from disk and processes a set of images too large to
simultaneously fit in memory. The image names names must be
in the form 'image001', 'image002', ..., but this can be changed.
}
var
 i:integer;
begin
 for i:=1 to 1000 do begin
 open('image',i:3);
 {process;}
 save;
 close;
 end;
end;

Avoiding a macro dialog box

From wayne@helix.nih.gov (Wayne Rasband) reply on nih-image@soils.umn.edu

You should be able to process many files and only have to see one dialog
box. For example, only one dialog appears when you run the following macro
as long as 'A', 'B' and 'C' are in the same folder.

macro 'test';
begin
 Open('A');
 Invert;
 Save;
 Close;
 Open('B');

Another way to avoid the dialog box is to use full directory paths as in
the following example.

macro 'test';
begin
 Open('hd400:images:A');
 Invert;
 Save;
 Close;
 Open('hd400:images:B');
 Invert;
 Save;

 Close;
 Open('hd400:images:C');
 Invert;
 Save;
 Close;
end;

In V1.55, you can use a full folder path [.e.g., SaveAs('HD400:My Images:mage001')] and
the dialog box will not be displayed.

TickCount

From wayne@helix.nih.gov (Wayne Rasband) reply on nih-image@soils.umn.edu

According to "Inside Macintosh", ticks are counted at the rate of 60 per
second. You can varify this by running the enclosed macro and timing the
interval between beeps.

macro 'TickCount Test';
{"Beeps" every 10 seconds}
 var
 interval,ticks:integer;
begin
 interval:=600;
 ticks:=TickCount+interval;
 repeat
 if TickCount>=ticks then begin
 beep;
 ticks:=ticks+interval;
 end;
 until button;
end;

Placing time and date into your data

If you desire date/time in your results you can create a separate text window which will
include date and time. You can copy other results (from Show Results) to this window
afterwards.

macro 'Date and time to window';
var
 year,month,day,hour,minute,second,DayOfWeek:integer;
begin
 GetTime(year,month,day,hour,minute,second,DayOfWeek);
 NewTextWindow('Data measurements',500,600);
 SetFont('Monaco');
 SetFontSize(12);
 Writeln('Data Analysed - ',month:2,'/',day:2,'/'year-1900:2,' at '
 ,hour:2,':',minute:2);
 Writeln('');
end;

PlotData notes

From reply of jy@nhm.ic.ac.uk on nih-image@soils.umn.edu

>Does anyone know of an easy way to get the actual points in x,y coordinates and
>the values at each point from the profile plot data using macros?

Image 1.54 introduced a new command to +/- allow this:

"A command was added to the macro language for making profile plot data
available to macro routines. It has the form
"GetPlotData(count,ppv,min,max)", where count is the number of values, ppv
is the number of pixels averaged for each value, and min and max are the
minimum and maximum values. The plot data values are returned in a built-in
real array named PlotData, which uses indexes in the range 0-4095. The
macro "Plot Profile" in "Plotting Macros" illustrates how to use
GetPlotData and PlotData."

[from the changes file]

To help answer your question further....

1. For a count value of n the PlotData array will have meaningful values
from 0 to n-1 (higher array values are accessible but will contain
old/meaningless results).

2. Count is equal to the line length, in pixels, rounded to the nearest
integer value. But...

3. Substantially more pixels are usually highlighted by a line selection,
and this seems to have only an approximate corelation with the pixels used
by PlotData.

4 The PlotData array contains real-numbers (not integers) which presumably
are derived from a weighted average of pixels rather than being the values
of single pixels - even when ppv is 1. Because of this it is not possible
to relate PlotData values to single locations.

5. My conclusion after some experimentation is that;

 after GetLine(x1,y1,x2,y2,lw);
 and GetPlotData(count,ppv,min,max);

The following function will probably return the centre of the location used
to derive PlotData[c]:
 ypos:=y1+(c+0.5)/(count)*(y2-y1);
 xpos:=x1+(c+0.5)/(count)*(x2-x1);

Calling user written pascal from a macro

Image allows you to call by name user developed pascal routines from a macro which
you write. Outlined below are example steps you can take to achieve this. You can pass into
your pascal procedure up to three extended values. If you don't have any values to pass than
pass a zero or any other value.

Step 1:
Write a macro or macro procedure which calls UserCode(n,p1,p2,p3). Be sure to pass

values for n, p1, p2 and p3. The example below will call a routine in User.p to add and
display two numbers. Note that n equals 1 in this call, because the routine calls the 1st
UserMacroCode. This is further explained in step 3.

macro 'Add two values'
v a r
 NoValue:integer;
 ValueOne,ValueTwo:Real;
begin
 NoValue := 0;
 ValueOne := 2.0;
 ValueTwo := 3.14
 UserCode('AddTwoNumbers',ValueOne,ValueTwo,NoValue);
end;

Step 2:
Write a pascal routine in the User.p module. Again, this example simply adds two

numbers and shows the result in the Info Window.

 procedure AddTwoNumbers (Value1, Value2: extended);
 v a r
 str1, str2, str3: str255;
 Result: extended;
 b e g i n
 Result := Value1 + Value2;
 RealToString(Value1, 5, 2, str1);
 RealToString(Value2, 5, 2, str2);
 RealToString(Result, 5, 2, str3);
 ShowMessage(Concat('1st number = ', str1, cr, '2nd number = ', str2, cr, 'Added result =
', str3));
 e n d ;

Step 3:
Modify the UserMacroCode procedure to call your pascal procedure. The

UserMacroCode procedure is found at the bottom of the User.p module. Because you could
call differing UserCode routines, the string you pass into UserCode selects which routine
you would like to call. This example checks to see if you have passed the string
'AddTwoNumbers'.

 procedure UserMacroCode (str: str255; Param1, Param2, Param3: extended);
 begin
 MakeLowerCase(str);
 if pos('addtwonumbers', str) <> 0 then begin
 AddTwoNumbers(Param1, Param2);
 exit(UserMacroCode);
 end;
 ShowNoCodeMessage;
 end;

Step 4:
Compile your modified version of Image. Load your macro and execute away. Shown

below is the result of the entire example.

Pascal Examples, Techniques & Operations

Users can use User.p

The User.p module is a good candidate for the placement of pascal source code which
you develop. Since the User.p module is strategically placed in the build order below other
modules you can call just about any routine in the rest of the project. Be sure to add the
module name which contains the routine you are calling to the uses command in User.p

u s e s
 QuickDraw, Palettes, PrintTraps, globals, Utilities, Graphics; <=== add module name
here if you need to. Example would be File1, File2 or any other unit.

Recommended addition when adding to pascal

If you plan on modifying any of the pascal units, I would personally recommend that
you add two comment lines to each and every pascal modification that you do. These are:

{Begin Modification}
YourModification;
{End Modification}

You won't regret it later when you go through code you wrote a year or two ago, or if
you try and read somebody else's code. It is easy to use the find utility to find your old or
other peoples modifications by searching on "begin modifications'.

Returning a value from pascal to a macro

One method for returning a calculated value from a pascal routine back into a macro is
to use the rUser1 or rUser2 arrays. You can return real numbers and many of them if you
need too.

In Pascal have:

User1^[1] := MyReturnValue;

In the macro have:

ReturnedValue := rUser1[1];

Or if you desire seeing the output in the results window you could have a macro like this:

Macro 'Show table';
begin
 SetOptions('User1');
 SetPrecision(3);
 SetCounter(5);
 SetUser1Label('My 5 calc values');
 ShowResults;
end;

Pascal versions of SelectSlice & SelectPic
SelectSlice is available directly in pascal. You might set something up like the

following:

if Info^.StackInfo <> nil then
 SliceCount := Info^.StackInfo^.nSlices
e l s e
 SliceCount := 1;
for SliceNumber := 1 to SliceCount do begin
 SelectSlice(SliceNumber);

For SelectPic you might copy this code (taken from macros source file) and pass the
PictureNumber to the routine (i.e. for PictureNumber:=1 to nPics):

 procedure SelectImage (id: integer);
 begin
 StopDigitizing;
 SaveRoi;
 DisableDensitySlice;
 SelectWindow(PicWindow[id]);
 Info := pointer(WindowPeek(PicWindow[id])^.RefCon);
 ActivateWindow;
 GenerateValues;
 LoadLUT(info^.cTable);
 UpdatePicWindow;
 end;

Putmessage, showmessage & PutmessageWithCancel

PutMessage
PutMessage is perhaps one of the easiest ways to provide feedback to users. To use

putmessage you simply call the routine with the message or string you wish to give to the
user.

PutMessage('Capturing requires a Data Translation or SCION frame grabber card.');

You can pass multiple arguments with PutMessage. Doing this is a bit different is Pascal and
macros.

PutMessage(concat('Number of Objects: ', Long2Str(ObjectCount)));

PutMessageWithCancel
PutMessageWithCancel allows you to choose the path you might want to take in your

code. Unlike putmessage, it allows you to press a cancel button. This might indicate that you
should exit your procedure, such as in this example:

v a r

 item: integer;
begin
item := PutMessageWithCancel('Do you really want to do this operation?');
if item = cancel then
 exit(YourProcedure);

ShowMessage
ShowMessage allows display of calculations, data, variables or whatever you cast as a

string into the Info window.

ShowMessage('No QuickTime');

or when more involved you must convert reals or integers into strings before issuing the
command:

str1 := concat('min=', long2str(CurrentMin), ' (', long2str(AbsoluteMin), ')', crStr,
'max=', long2str(CurrentMax), ' (', long2str(AbsoluteMax), ')');

ScaleFactor := 253.0 / (CurrentMax - CurrentMin);

RealToString(ScaleFactor, 1, 4, str2);

ShowMessage(concat(str1, crStr, 'scale factor= ', str2));

How to input a number

 function GetInt (message: str255; default: integer; var Canceled: boolean): integer;
 function GetReal (message: str255; default: extended; var Canceled: boolean): extended;

You probably don't want to develop an entire dialog routine just to pass a number into
your procedure from the keyboard. Fortunately, you don't have to. A default dialog exists
for getting integers and real numbers.

v a r
 EndLoopCount:integer;
 WasCanceled:boolean;
b e g i n
....{rest of code}
 EndLoopCount :=0; {a default}
 EndLoopCount := GetInt('Enter number of iterations:',5,WasCanceled);
 if WasCanceled t h e n
 exi t (YourProcedureName) ;

Reading from disk

From disk to macro user arrays:

If you have tab delimited data which you want loaded into the macro User arrays, you
can easily open the data with this routine. If you have more than two columns of data then
use one or more of the other macro arrays. To use this routine copy it into User.p, set it up
as a UserCode call and recompile Image. You have to add File2 (File2.p contains
GetTextFile) to the Uses clause at the beginning of User.p. Note that this routine has been
changed for version of Image 1.54 and above.

procedure OpenData;
 v a r
 fname: str255;
 RefNum, nValues, i: integer;
 rLine: RealLine;
b e g i n
 if not GetTextFile(fname, RefNum) t h e n
 exit(OpenData);
 InitTextInput(fname, RefNum);
 i := 1;
 while not TextEOF d o
 b e g i n
 GetLineFromText(rLine, nValues);
 User1^[i] := rLine[1];
 User2^[i] := rLine[2];
 i := i + 1;
 e n d ;
e n d ;

If you want to see the data, take a look at the macro above in the section on returning a
value from pascal to a macro.

To your own arrays:

The routine is just as applicable to those who wish to read data from disk into arrays of
their own, and not the user arrays. If you have your own large arrays, you will need to
allocate memory for the pointers. An example of this is shown in the section "Memory". You
can open data to as many arrays as you allocate by replacing User1^[i]. Example:

while not TextEOF do begin
 GetLineFromText(rLine, nValues);
 xCoordinate^[i] := rLine[1];
 yCoordinate^[i] := rLine[2];
 zCoordinate^[i] := rLine[3];

Memory and pointer allocation

Show below is an example of dynamic memory allocation. If you plan on using a large
array then you need to allocate memory for the task. You should free the memory when
done.

Here is an example of allocating memory for pointer arrays in User.p:

{User global variables go here.}
 c o n s t
 MyMaxCoordinates = 5000;

 t y p e
 CoordType = packed array[1..MyMaxCoordinates] of real;
 CoordPtr = ^CoordType;

 v a r
 xCoordinate, yCoordinate, zCoordinate: CoordPtr;

procedure YourAllocationCode;
 b e g i n
 xCoordinate := CoordPtr(NewPtr(SizeOf(CoordType)));
 yCoordinate := CoordPtr(NewPtr(SizeOf(CoordType)));
 zCoordinate := CoordPtr(NewPtr(SizeOf(CoordType)));
 if (XCoordinate = nil) or (yCoordinate = nil) or (zCoordinate = nil) then begin
 DisposPtr(ptr(xCoordinate));
 DisposPtr(ptr(yCoordinate));
 DisposPtr(ptr(zCoordinate));
 PutMessage('Insufficient memory. Use get info and allocate more memory to Image');
 e n d ;
e n d ;

If you don't need the pointer anymore you can free memory using the DisposPtr call.

Operating on an Image

The global variables below relate directly to handling of images. The entire PicInfo
record is not displayed. The actual record contains a number of other useful image parameters
and can be seen in the globals.p file of the image project. Familiarity with the data structure is
advisable to those who plan on modifying or operating on the image in any manner.

t y p e
 PicInfo = r e c o r d
 nlines, PixelsPerLine: integer;
 ImageSize: LongInt;
 BytesPerRow: integer;
 PicBaseAddr: ptr;
 PicBaseHandle: handle;
 {many others covered, in part, in other sections}
 e n d ;

 InfoPtr = ^PicInfo;

v a r
 Info: InfoPtr;

Using this global structure allows for the simple use of

w i t h Info^ do begin
 DoSomethingWithImage;
e n d ;

Getting at the bytes of an image

Any number of techniques can be used to access the image for use or modification
purposes. Several techniques and examples are listed below. The choice for which to use
largely depends upon the application at hand.

 Pascal routines such as GetLine use the LineType. First look at the definition of LineType.
LineType is globally declared as:

 LineType = packed array[0..MaxLine] of UnsignedByte;

Naturally, UnsignedByte has been type defined as:

UnsignedByte = 0..255;

Pascal Technique one: Use Apple's "CopyBits" to wholesale copy a ROI, memory
locations, or an entire image. Example's of CopyBits can be seen in the Image source code
Paste procedure, some of the video capture routines and many others.

Pascal Technique two: Use ApplyTable to change pixels from their current value to
pixels of another value. You fill the table with your function. The simple example below,
which is extracted from DoArithmetic, would add a constant value to the image. The index of
the table is the old pixel value and tmp is the new pixel value. With ApplyTable you don't
have to work with a linear function like adding a constant. You basically can apply any
function you like. Of course, you would want to always check and see if you are above 255
or below zero and truncate as needed. The actual ApplyTable procedure calls assembly coded
routines in applying the function to the image.

Technique 2 example

procedure SimpleUseOfApplyTable;
 v a r
 table: LookupTable;
 i: integer;
 tmp: LongInt;
 Canceled: boolean;
b e g i n
 constant := GetReal('Constant to add:', 25, Canceled);
 for i := 0 to 255 do begin
 tmp := round(i + constant);
 if tmp < 0 then
 tmp := 0;
 if tmp > 255 then
 tmp := 255;
 table[i] := tmp;
 e n d ;
 ApplyTable(table);
e n d ;

Aside from "doing arithmetic" such as adding and subtracting, the AppyTable routine is
used by Image to apply the Look Up Table (LUT) to the image. Changing the LUT, such as
by contrast enhancement or using the LUT tool, doesn't change the bytes of the image until
the menu selection "Apply LUT" is selected from the Enhance menu.

Technique Three:

A: Use a procedure such as GetLine to move sequentially down lines of the image. You can
access each line as an array. Compiled pascal is obviously much than a macro at doing this.
In addition, your macro can call the faster compiled pascal code.

B: Use the Picture base address, offset to current location, and Apple's Blockmove to access
individual lines of the image. Again, each line can be treated as an array allowing access to
individual picture elements. Examples below.

First look at the definition of LineType. LineType is globally declared as:
 LineType = packed array[0..MaxLine] of UnsignedByte;

Naturally, UnsignedByte has been type defined as:
UnsignedByte = 0..255;

For the technique 3 examples you can either:

1) Deal with the entire image and find it's width and height as:
with info^.PicRect do begin
 width := right - left;
 height := bottom - top;
 vstart := top;
 hstart := left;
 end;

2) Deal with just the ROI that you have created and use:
with Info^.RoiRect do begin
 width := right - left;
 RoiTop := top;
 RoiBottom := bottom;
 RoiLeft := left;
 RoiRight := right;
 end;

It is often useful to have your routine automatically define the entire image as the area
which you will operate on. To automatically select the image you might do the following:

 v a r
 AutoSelectAll: boolean;
b e g i n
AutoSelectAll := not info^.RoiShowing;
 if AutoSelectAll t h e n
 SelectAll(false);

The false parameter is used to make an invisible ROI rather than the visible 'marching
ants' typified by ROI selections. By first checking if an ROI exists, this code prevents
overwrite of your specific ROI.

Technique 3A example

See specific examples in the procedure ExportAsText, DoInterpolatedScaling and
others. See also the procedure GetLine.

procedure AnyOldProcedure;
 v a r
 width, hloc, vloc: integer;
 theLine: LineType;
b e g i n
 with info^.RoiRect do begin
 width := right - left;
 for vloc := top to bottom - 1 do begin
 GetLine(left, vloc, width, theLine);
 for hloc := 0 to width - 1 do begin
 DoSomethingWithinTheLine i.e. TheLine[hloc]
 e n d ;
 e n d ;
 end;
e n d ;

Technique 3B example

This prolonged example will perform the same function as the 3a. It may or may not be
easier for you to see how it functions, but should let you see how GetLine can do the job
with a lot less programming. As usual some of the variables are seen in the globally declared
PicInfo record.

procedure AnotherOldProcedure;
v a r
 OldLine,NewLine: LineType;
 SaveInfo: InfoPtr;
 p, dst: ptr;
 offset: LongInt;
 c,i: Integer;
b e g i n
 SaveInfo := Info;
with info^.PicRect do begin
 width := right - left;
 height := bottom - top;
 vstart := top;
 hstart := left;
 end;
if NewPicWindow('new window', width, height) then
 with SaveInfo^ do begin
 offset := LongInt(vstart) * BytesPerRow + hstart;
 p := ptr(ord4(PicBaseAddr) + offset);
 dst := Info^.PicBaseAddr;
 whi le i <= height do begin
 BlockMove(p, @OldLine, width);
 p := ptr(ord4(p) + BytesPerRow);
 while c <= Saveinfo^.pixelsperline do begin
 NewLine[c] := OldLine[c] {+ or -??-find a pixel and do what you want}
 e n d ;
 BlockMove(@NewLine, dst, width);
 dst := ptr(ord4(dst) + width);
 end ; {while i <= height}
 end; { with SaveInfo^}
e n d ;

 The 3b example is an oversimplification of the function duplicate in the image project.
It usually is a good idea to first create a new window to move your information to. The
NewPicWindow procedure can do this. The dst pointer can point into the new windows
memory.

Working with two images
If you want to work with two images in pascal, using the data from one to effect the

other image, you could set up something like the following code. You can easily work with
two InfoPtr's to do the job. You might pass the picture number from a macro for
convenience

SrcInfo := Info;
DestPic := Trunc(FinalImage);
Info := pointer(WindowPeek(PicWindow[DestPic])^.RefCon);
DstInfo := Info;{assign it to DstInfo}
 for vloc := RoiTop to RoiBottom - 1 do begin
 Info := SrcInfo;
 GetLine(RoiLeft, vloc, width, CurLinePtr^);

{Do something with the data and put the data to the other window}
 NewLinePtr^[hloc] := CurLinePtr^[hloc]*myfactor

 Info := DstInfo;
 PutLine(RoiLeft, vloc, width, NewLinePtr^);

4D dataset

If you have multiple stacks of images which all relate to each other in some manner,
you can load them all into memory for calculations. A program such as SpyGlass is useful
for viewing this type of data, but it may not provide you with the means for calculating
terribly much. If you wish to have a unique calculated value, or any type of value, for each
point in each stack you could use Image and set something up like the below. Make sure you
use Long integers for just about everything of the integer type. This routine should work
with stacks of differing sizes loaded (i.e. one stack could be 200x200x5 and others might be
256x256x10 and so on).

{Set up multiple for loops for nPics and each SliceCount}
for PictureNumber := 1 to npics...
{You must find the previous data offset for the final array}
CurrentInfo := Info;
PreviousEndOfData := 0;
for i := 1 to PictureNumber - 1 do begin
 TempInfo := pointer(WindowPeek(PicWindow[i])^.RefCon);
 Info := TempInfo;
 with Info^.PicRect do begin
 Previouswidth := right - left;
 Previousheight := bottom - top;
 e n d ;
 if Info^.StackInfo <> nil t h e n
 PreviousSliceCount := Info^.StackInfo^.nSlices
 else
 PreviousSliceCount := 1;
 BytesUsed := PreviousSliceCount * PreviousWidth * PreviousHeight;
 PreviousEndOfData := PreviousEndOfData + BytesUsed;
e n d ;
Info := CurrentInfo;
{Find how many slices in the current pic}
if Info^.StackInfo <> nil then
 SliceCount := Info^.StackInfo^.nSlices
e l s e
 SliceCount := 1;
For SliceNumber := 1 to SliceCount
{Set up rest of the for loops here. The usual, up to hloc & vloc}
{put those here}
{Now compute a unique array offset}
ArrayOffset := PreviousEndOfData + (SliceNumber - 1) * LongInt(width) * height +
LongInt(width) * longInt(vloc) + LongInt(hloc);
{Finally store your calculation into a unique location}
MyHugeArray^[ArrayOffset] := SomeCalculatedValue;

Creating a dialog box

Get
 function GetDNum (TheDialog: DialogPtr; item: integer): LongInt;
 function GetDString (TheDialog: DialogPtr; item: integer): str255;
 function GetDReal (TheDialog: DialogPtr; item: integer): extended;

Set
 procedure SetDNum (TheDialog: DialogPtr; item: integer; n: LongInt);
 procedure SetDReal (TheDialog: DialogPtr; item: integer; n: extended; fwidth: integer);
 procedure SetDString (TheDialog: DialogPtr; item: integer; str: str255);
 procedure SetDialogItem (TheDialog: DialogPtr; item, value: integer);

Dialogs are a good way to handle user I/O. If you can't get by with the set of dialogs in
Image you could add one of your own. They can be used to set parameters or give options to
the user. Several example dialogs in Image are the preferences dialog box and the SaveAs
dialog. The template for dialog boxes are in the Image.rsrc file under DLOG and DITL. The
DITL resource is for creation of each dialog item in the DLOG. Naturally, each item in the
dialog template has a reference integer value associated with it. This allows you to keep track
of what you are pressing or which box you are entering information into.

To handle the dialog to user I/O, you need to have a tight loop checking what is being
pressed or entered. If the user is entering a number or string you need to retrieve it with one
of the GET dialog functions. Likewise, you can pass information or turn off a button with
the SET procedures. The basic form for a dialog loop appears below:

mylog := GetNewDialog(130, nil, pointer(-1)); {retrieve the dialog box}
Do default SET's here
OutlineButton(MyLog, ok, 16);
r e p e a t
 ModalDialog(nil, item);
 if item = SomeDialogItemID then begin
 Get or Set something
... lots of if statements to check which item is pressed
until (item = ok) or (item = cancel);
DisposDialog(mylog);

Key & mouse

 function OptionKeyDown: boolean;
 function ShiftKeyDown: boolean;
 function ControlKeyDown: boolean;
 function SpaceBarDown: boolean;

It is fairly common for a menu selection to have several possible paths to follow. The
selection process can be dictated via use of simple boolean functions. For the most part they
are self explanatory. Holding the option key down when selecting a menu item is the most
common way to select a divergent path. Your routine need only execute the function to test
the key status.

 if OptionKeyDown then begin
 DoSomething;
 e n d
 else begin
 DoSomeThingElse;
 e n d ;

CommandPeriod

 function CommandPeriod: boolean;

The CommandPeriod function is used when you want to interrupt execution of a
procedure. For example you might include the following bit of code in a prolonged looping
routine that you write:

if CommandPeriod then begin
 beep;
 exit(YourLoopingProcedure)
 e n d ;

Mouse button
Apple has supplied several mouse button routines such as the true or false button boolean.
It's functionality is the same as in the macro language.

Function Button:boolean;

The button functions are explained in Inside Mac

Image and text

There are a number of ways to handle text with Image. If you are working in the
context of macros, then a text window should handle most of what you want to do. Copy
and paste functions work with the text window.

If your needs are larger, or if you are considering extensive data to disk handling, then
you should consider using the textbuffer pascal routines described below. You can use these
routines to export as text all the data you can possibly fill memory with. These are NOT
connected with the text window routines, which are seperately seen in the Text.p file.

Global declarations
c o n s t
 MaxTextBufSize = 32700;
t y p e
 TextBufType = packed array[1..MaxTextBufSize] of char;
 TextBufPtr = ^TextBufType;
v a r
 TextBufP: TextBufPtr;
 TextBufSize, TextBufColumn, TextBufLineCount: integer;

Other useful definitions include:
 cr := chr(13);
 tab := chr(9);
 BackSpace := chr(8);
 eof := chr(4);

Dynamic memory allocation for the textbuffer (under Init.p) sets up a non-relocatable
block of memory.

TextBufP := TextBufPtr(NewPtr(Sizeof(TextBufType)));

To clear the buffer set TextBufSize equal to zero. Use TextBufSize to keep track of
what data within the textbuffer is valid. Anything beyond the length of TextBufSize is not
useful. Many Apple routines, such as FSWrite, require the number of bytes be passed as a
parameter.

Text buffer utilities
Some of the utilities associated with the textbuffer include:

procedure PutChar (c: char);
procedure PutTab;
procedure PutString (str: str255);
procedure PutReal (n: extended; width, fwidth: integer);
procedure PutLong (n: LongInt; FieldWidth: integer);

Expansion of PutString may help in the understanding of the functionality involved:
p r o c e d u r e PutString (str: str255);
 v a r
 i: integer;
 b e g i n

 for i := 1 to length(str) do begin
 if TextBufSize < MaxTextBufSize then
 TextBufSize := TextBufSize + 1;
 TextBufP^[TextBufSize] := str[i];
 TextBufColumn := TextBufColumn + 1;
 e n d ;
 end;

An example call sequence which places text into textbuffer might look something like:
PutSting('Number of Pixels');
PutTab;
PutStr ing('Area ') ;
putChar(cr) ;

To Save the textbuffer, the procedure SaveAsText can be used after a SFPPutfile to
FSWrite data to the disk or other output.

Saving a text buffer
To Save the textbuffer, the procedure SaveAsText can be used after a SFPutfile.

SaveAsText will FSWrite data to the disk. SFPutfile shows the standard file dialog box and
FSWrite (within SaveAsText) does the actually saving to disk.

procedure SampleSaveBuffer;
 v a r
 Where: point;
 reply: SFReply;
 b e g i n
 SFPutFile(Where, 'Save as?', 'Buffer data', nil, reply);
 if not reply.good t h e n
 exit(SampleSaveBuffer);
 with reply d o
 SaveAsText(fname, vRefNum); {this will handle the FSWriting}
 e n d ;

